Механизм сокращения мышц микроструктура миофибрилл


Структура миофибрилл и её изменения при сокращении. — Студопедия

Современные представления о структуре миофибриллярного (сократительного) аппарата основываются на исследованиях структуры мышечного волокна при помощи электронной микроскопии, рентгеноструктурного анализа в сочетании с гистохимическими методами.

Установлено: каждая миофибрилла мышечного волокна диаметром 1 мкм состоит в среднем из 2500 протофибрилл, представляющих собой удлиненные полимеризованные молекулы сократительных белков – миозина и актина, которые называются протофибриллами. Миозиновые протофибриллы, или как их ещё называют, нити, вдвое толще актиновых (их диаметр около 10 нм). В состоянии покоя в мышце нити расположены так, что тонкие актиновые нити входят своими концами в промежутки между короткими и толстыми миозиновыми протофибриллами. Благодаря этому І-диски состоят только из актиновых нитей, а А-диски – из миозиновых и небольшого количества актиновых нитей (в местах захода актиновых нитей в промежутки между миозиновыми).

Светлая полоса Н представляет собой узкую зону в диске А, свободную от актиновых нитей. Мембрана Z, проходя через середину диска І, скрепляет между собой эти нити.


Миозиновые нити имеют поперечные выступы длиной около 20 нм, с головками примерно 150 молекул миозина. Они отходят от нити биполярно, во время сокращения каждая головка миозина может связывать миозиновую нить с актиновой. Наклоны этих актиновых центров на миозиноых нитях создают объединенное усилие, происходит «гребок», продвигающий актиновую нить к середине саркомера. В конечной фазе сокращения миозиновые нити достигают линии Z, занимая весь саркомер, а актиновые нити располагаются между ними. При этом наблюдается уменьшение длины диска І, а к концу сокращения – исчезновение дисков І и утолщение линии Z.

Так объясняет феномен укорочения общей длины мышечного волокна в процессе сокращения теория скользящих нитей (теория «зубчатого колеса»), разработанная Хаксли и Хансон (1954), и дополненная этими же авторами в 1981 году.


  1. МЕХАНИЗМ СОКРАЩЕНИЯ МЫШЕЧНОГО ВОЛОКНА.


Основное положение теории скользящих нитей – во время скольжения (сокращения) сами актиновые и миозиновые нити не укорачиваются, так как ширина диска А остается при сокращении постоянной, а І-диски и Н-зоны становятся более узкими или совсем исчезают. Длина протофибрилл не изменяется и при растяжении мышцы. Вместо этого пучки тонких нитей, скользя, выходят из промежутков между толстыми нитями, так что степень их перекрытия уменьшается


Каким же образом осуществляется «разнонаправленное скольжение» актиновых нитей в соседних половинах саркомера?

Во время сокращения каждая головка миозина, или поперечный мостик, связывает миозиновую протофибриллу с актиновой. Наклоны головок создают объединенное усилие, и происходит скольжение (гребок), продвигающий актиновую нить к середине саркомера. Биполярная организация молекул миозина в двух половинах саркомера уже обеспечивает возможность скольжения актиновых нитей в противоположном направлении в левой и правой половине саркомера.

Когда мышца расслабляется, головки миозина отходят от актиновых нитей. Поскольку актиновые и миозиновые нити могут легко скользить относительно друг друга, сопротивление растяжению в расслабленных мышцах оказывается низким, поэтому удлинение мышцы во время расслабления является пассивным.

ЭТАПЫ ГЕНЕРАЦИИ СОКРАЩЕНИЯ.


  1. Стимуляция мышечного волокна: возбуждение мышц обычно происходит при поступлении потенциала действия от иннервирующих мотонейронов через посредство нервно-мышечных синапсов.

  2. В результате на мембране мышечного волокна формируется ПД, который распространяется вглубь мышечного волокна к миофибриллам.

  3. Происходит процесс электромеханического сопряжения: он представляет собой преобразование электрического потенциала действия в механическое «скольжение» протофибрилл по отношению друг к другу. Этот процесс происходит в несколько этапов с обязательным посредством ионов кальция!


Механизм, посредством которого Са2+ активирует волокно, легче понять при рассмотрении структуры актиновых нитей. Актиновая нить длиной около 1 мкм и толщиной 5-7 нм состоит из двух закрученных один вокруг другого и напоминающих нитки бус мономеров актина толщиной каждой по 5 нм. Через регулярные промежутки примерно 40 нм на цепях актина находятся сферические молекулы тропонина, а в желобках между цепями актина лежат нити тропомиозина. В отсутствии Са2+, т.е. при расслаблении миофибрилл, длинные молекулы тропомиозина располагаются так, что блокируют прикрепление поперечных мостиков миозина к актиновым цепям. Под влиянием активирующего начала ионов Са2+ молекулы тропомиозина глубже опускаются в желобки между мономерами актина, открывая участки прикрепления для поперечных мостиков миозина. В результате мостики миозина прикрепляются к актиновым нитям, АТФ расщепляется и развивается мышечная сила. Эти активационные эффекты обусловлены действием Са2+ на тропонин, причем последний работает как «кальциевый переключатель», а именно: при связывании с Са2+ молекула тропонина деформируется так, что она толкает тропомиозин в желобки между нитями актина. При этом концентрация тонов Са2+ должна достигать пороговой величины 10-6 – 10-5 моль/л.

Хранение и высвобождение ионов кальция. В состоянии расслабления мышца содержит более 1 мкмоль Са на 1 г сырого веса. Если бы соли Са не были изолированы в особых внутриклеточных хранилищах, обогащенные кальцием мышечные волокна находились бы в состоянии непрерывного сокращения. Структура внутриклеточных систем хранения кальция следующая: во многих участках мембрана мышечной клетки углубляется внутрь волокна, перпендикулярно его продольной оси, образуя трубки; эта система поперечных трубочек (Т-система) соединяется с внеклеточной средой. Перпендикулярно Т-системе, т.е. параллельно миофибриллам, расположена система продольных трубочек (истинный саркоплазматический ретикулум). Пузырьки на концах этих трубочек, терминальные цистерны, находятся очень близко к мембранам поперечной системы, образуя триады. В этих пузырьках и хранится внутриклеточный Са2+. В отличие от поперечной системы продольная система не соединяется с окружающей средой.

Таким образом, электромеханическое сопряжение происходит посредством распространения потенциала действия по мембранам поперечной системы внутрь клетки. При этом возбуждение быстро проникает во внутрь волокна, переходит к продольной системе и, в конечном счете, вызывает высвобождение ионов Са2+, которые хранятся в терминальных цистернах, во внутриклеточную жидкость около миофибрилл, что ведет к сокращению.


РОЛЬ АТФ В МЕХАНИЗМЕ МЫШЕЧНОГО СОКРАЩЕНИЯ

В процессе взаимодействия миозиновых и актиновых нитей в присутствии Са2+ важную роль играет АТФ.

Энергия АТФ используется во время деятельности скелетной мышцы для трех основных процессов:


  1. работы натрий-калиевого насоса, обеспечивающего поддержание постоянства градиента концентрации ионов натрия и калия по обе стороны мембраны;

  2. процесса скольжения актиновых и миозиновых нитей, ведущего к укорочению миофибрилл;

  3. работы кальциевого насоса, необходимого для расслабления волокна.


В соответствии с этим фермент АТФаза локализован в трех различных структурах мышечного волокна: клеточной мембране, миозиновых нитях, мембранах саркоплазматического ретикулума. АТФ гидролитически арсщепляется и, таким образом, энергетически утилизируется с помощью АТФазы – фермента миозина; причем, процесс активируется актином.

Рис.
Потребление АТФ при сокращении. Сейчас известно, что головки миозина, которые взаимодействуют с актином, сами содержат каталитические активные центры для расщепления АТФ. АТФаза миозина активируется актином в присутствии ионов Mg2+. Поэтому при физиологическом ионном составе среды, т.е. в присутствии ионов Mg2+, АТФ расщепляется с освобеждением АДФ и фостата только в случае прикрепления головки миозина к активирующему белку – актину. В каждом цикле прикрепления-отсоединения поперечного мостика АТФ расщепляется только один раз (вероятно, 1 молекула АТФ на 1 поперечный мостик). Это означает, что чем больше поперечных мостиков находится в активном состоянии, тем выше скорость расщепления АТФ и сила, развиваемая мышцей. Таким образом, скорость расщепления АТФ (или метаболическая скорость) и сила, развиваемая мышцей, бывают обычно пропорциональны друг другу. Мышечное сокращение происходит тем быстрее, чем скорее передвигаются поперечные мостики, т.е. чем больше гребковых движений они делают в единицу времени. В результате быстрые мышцы потребляют больше АТФ (или энергии) в единицу времени, чем медленные мышцы, и сохраняют меньше энергии во время тонического удержания нагрузки. Поэтому для «изометрической работы» организм использует преимущественно медленные (тонические) «красные» мышцы, тогда как бедные миоглобином «белые» мышцы служат для быстрых движений.

Механизм действия АТФ. Молекула АТФ с поперечным мостиком после завершения его «гребкового» движения, и это обеспечивает энергию для разделения компонентов, участвующих в реакции – актина и миозина. После этого головки миозина отсоединяются от актина; затем АТФ расщепляется до АДФ и фосфата с промежуточным образованием комплекса фермент-продукт. Расщепление является обязательным условием для следующего прикрепления поперечного мостика к актину с освобождением АДФ и фосфата и «гребковым» движением мостика. Когда движение мостика завершается, с ним связывается новая молекула АТФ, и начинается новый цикл.

Циклическая активность поперечных мостиков, т.е. ритмическое прикрепление и отсоединение мостиков, которое обеспечивает мышечное сокращение, возможна только до тех пор, пока продолжается гидролиз АТФ, т.е. пока происходит активация АТФазы. Если расщепление АТФ заблокировать, мостики не могут повторно прикрепляться, мышца расслабляется.

После смерти содержание АТФ в мышечных клетках снижается, когда оно переходит критический уровень, поперечные мостики оказываются устойчиво прикрепленными к актиновой нити (пока не произойдет аутолиз). В таком состоянии актиновые и миозиновые нити прочно связаны друг с другом, мышца находится в состоянии трупного окоченения.

Ресинтез АТФ осуществляется двумя основными путями:


  1. ферментативный перенос фосфатной группы от креатинфосфата на АДФ. Ресинтез обеспечивается по этому пути в течение тысячных долей секунды, т.к. запасы КФ значительно больше в клетке, чем АТФ;

  2. гликолитические и окислительные процессы в покоящейся и деятельной мышце – медленный ресинтез АТФ через окисление молочной и пировиноградной кислот.

Нарушение ресинтеза АТФ ядами ведет к полному исчезновению АТФ и креатинфосфата, вследствие чего кальциевый насос перестает работать. Концентрация Са2+ в области миофибрилл значительно возрастает и мышца приходит в состояние длительного необратимого укорочения. Это состояние называется контрактурой.

Механизм мышечного сокращения — SportWiki энциклопедия

Нервно-мышечная реакция на силовую тренировку[править | править код]

Структура мышц[править | править код]

Мышца - это комплексная структура, отвечающая за движение. Мышцы состоят из саркомеров, которые содержат определенное сочетание фибриллярных белков - миозина (толстые нити) и актина (тонкие нити), которые играют важную роль в мышечных сокращениях. Таким образом, саркомер - это сократительный элемент мышечного волокна, состоящий из миозиновых и актиновых белковых нитей.

Помимо этого, способность мышцы сокращаться и прилагать силу зависит конкретно от ее вида, площади поперечного сечения, а также длины и количества волокон внутри мышцы. Число волокон определяется генетикой, и на него невозможно повлиять с помощью тренировок; однако тренировки в состоянии изменить другие переменные. Например, число и толщина миозиновых нитей увеличивается посредством упорных тренировок с максимальной силовой нагрузкой. Увеличение толщины мышечных нитей увеличивает размер мышцы и силу сокращений.

Человеческое тело состоит из различных типов мышечных волокон, подразделяющихся на группы, и каждая группа относится к одной двигательной единице. В общем и целом в нашем организме имеются тысячи двигательных единиц, в которых находятся десятки тысяч мышечных волокон. Каждая двигательная единица содержит сотни или тысячи мышечных волокон, пребывающих в покое до тех пор, пока им не нужно действовать. Двигательная единица управляет совокупностью волокон и направляет их действия по закону «все или ничего». Этот закон означает, что при раздражении двигательной единицы импульс, направляемый в ее мышечные волокна, либо распространяется полностью - таким образом раздражая всю совокупность волокон, - либо не распространяется вообще.

Разные двигательные единицы реагируют на разные нагрузки при тренировках. Например, выполнение жима лежа с 60% повторного максимума задействует определенную совокупность двигательных единиц, тогда как более крупные двигательные единицы ожидают более высокой нагрузки. Поскольку последовательное задействование двигательных единиц зависит от нагрузки, необходимо разрабатывать специальные программы, чтобы активизировать и адаптировать основные группы двигательных единиц и мышечных волокон, играющих доминирующую роль в избранном виде спорта. К примеру, в тренировках для спринта на короткую дистанцию и легкоатлетических дисциплин (таких как толкание ядра) следует использовать тяжелые нагрузки, чтобы способствовать развитию силы, необходимой для оптимизации скорости и взрывных действий.

Мышечные волокна выполняют разные биохимические (метаболические) функции; выражаясь конкретнее, одни лучше приспособлены с физиологической точки зрения к работе в анаэробных условиях, а другие лучше работают в аэробных условиях. Волокна, которые используют кислород для выработки энергии, называются аэробными, тип I, красными или медленными. Волокна, которым кислород не требуется, называются анаэробными, тип II, белыми или быстрыми. Быстрые мышечные волокна, в свою очередь, делятся на подтипы IIА и IIХ (иногда называемые IIВ, хотя у людей тип IIВ практически не встречается[1]).

Медленные и быстрые волокна существуют примерно в равной пропорции. Однако в зависимости от их функций, в некоторых группах мышц (например, подколенные сухожилия, бицепсы) содержится больше быстрых волокон, тогда как в других (например, в камбаловидной мышце) содержится больше медленных волокон. В таблице 2.1 мы сравниваем характеристики быстрых и медленных волокон.

Сравнение быстрых и медленных волокон

МЕДЛЕННЫЕ ВОЛОКНА

БЫСТРЫЕ ВОЛОКНА

Красные, тип I, аэробные

Белые, тип II, анаэробные

•    Медленно устают

•    Нервная клетка меньше - иннервирует от 10 до 180 мышечных волокон

•    Развивают долгие, продолжительные сокращения

•    Применяются для развития выносливости

•    Активизируются во время низко- и высокоинтенсивной деятельности

•    Быстро устают

•    Большая нервная клетка - иннервирует

от 300 до 500 (или более) мышечных волокон

•    Развивают короткие, сильные сокращения

•    Применяются для развития скорости и силы

•    Активизируются только во время высокоинтенсивной деятельности

Тренировки могут влиять на эти характеристики. Датские ученые Андерсен и Аагаард[2][3][4][5][6] в своих исследованиях показывают, что при объемных нагрузках или лактатных по природе тренировках волокна IIХ приобретают характеристики волокон IIА. То есть богатая миозином цепочка этих волокон становится более медленной и более эффективно справляется с лактатной деятельностью. Эти изменения можно повернуть вспять, снижая тренировочную нагрузку (тейперинг), в результате чего волокна IIХ возвращаются к изначальным характеристикам наиболее быстрых волокон[3]. Силовые тренировки также увеличивают размер волокон, благодаря чему вырабатывается больше силы.

Сокращение быстрой двигательной единицы более быстрое и мощное, чем сокращение медленной двигательной единицы. В результате пропорция быстрых волокон, как правило, выше в организме успешных спортсменов, занимающихся скоростно-силовыми видами спорта, но они также быстрее утомляются. Спортсмены с более высоким скоплением медленных волокон, напротив, обычно преуспевают в видах спорта на выносливость, поскольку они могут выполнять нагрузки низкой интенсивности в течение более продолжительного времени.

Активизация мышечных волокон происходит по принципу величины, известному также как принцип Хеннемана[7], согласно которому двигательные единицы и мышечные волокна активизируются начиная с меньшей в сторону большей. Активация всегда начинается с медленных волокон. При низкой или умеренно интенсивной нагрузке активируются медленные волокна и выполняют большую часть работы. При сильной нагрузке сначала сокращаются медленные волокна, затем в процесс вовлекаются быстрые волокна. При повторениях до отказа с умеренной нагрузкой двигательные единицы, состоящие из быстрых волокон, постепенно активизируются, чтобы поддерживать выработку силы, тогда как ранее задействованные двигательные единицы утомляются (см. рис. 1).

рис. 1. Последовательная активизация двигательных единиц в подходе упражнений до концентрического отказа

В распределении типов мышечных волокон у спортсменов, занимающихся разными видами спорта, могут наблюдаться различия. Это иллюстрируют рис. 2 и 2.3, представляющие общий процент содержания быстрых и медленных мышечных волокон у спортсменов в избранных видах спорта. Например, существенная разница между спринтерами и марафонцами четко дает понять, что успех в некоторых видах спорта хотя бы частично определяется генетическим составом мышечных волокон спортсмена.

рис. 2. Распределение типов волокон у мужчин в разных видах спорта. Обратите внимание на преобладание медленных волокон у спортсменов, занимающихся аэробными видами спорта, и на преобладание быстрых волокон у спортсменов, занимающихся скоростно-силовыми видами спорта

Следовательно, пиковая мощность, вырабатываемая спортсменами, также имеет отношение к распределению типов волокон - чем выше процент быстрых волокон, тем большую мощность развивает спортсмен. Процент быстрых волокон также имеет отношение к скорости: чем выше скорость спортсмена, тем выше процент имеющихся у него быстрых волокон. Из таких людей получаются превосходные спринтеры и прыгуны, а подобный природный талант следует направлять в русло скоростно-силовых видов спорта. Попытка тренировать их, скажем, для бега на дистанцию означает трату таланта; в таких дисциплинах их ждет лишь средний успех, тогда как из них могут выйти отличные спринтеры, бейсболисты или футболисты (на этом список скоростносиловых видов спорта не кончается).

рис. 3. Распределение типов волокон у женщин в разных видах спорта

Как мы описывали раньше, мышечные сокращения происходят в результате цепочки событий с участием белковых нитей - миозина и актина. В миозиновых нитях содержатся поперечные мостики - крошечные перемычки, выступающие вбок по направлению к актиновым нитям. Возбуждение, приводящее к сокращениям, стимулирует все волокно, создавая химические изменения, позволяющие актиновым нитям соединяться с миозиновыми поперечными мостиками. Связывание миозина с актином посредством поперечных мостиков высвобождает энергию, из-за чего поперечные мостики поворачиваются, таким образом подтягивая или совершая скользящее движение, связывающее миозиновые нити с актиновыми. Это скользящее движение вызывает мышечное сокращение, которое вырабатывает силу.

Чтобы визуализировать это иначе, вообразите гребную лодку. Весла представляют собой миозиновые нити, а воды - актиновые. Когда весла ударяются о воду, лодка с силой тянется вперед - и чем больше в воде весел, чем выше физическая сила гребца, тем больше вырабатываемая сила. Увеличение количества и толщины миозиновых нитей таким же образом повышает выработку силы.

Описанная ранее теория скользящих нитей дает понять, как работают мышцы, чтобы выработать силу. Эта теория включает в себя механизмы, способствующие эффективным мышечным сокращениям. Например, освобождение запаса эластичной энергии и рефлекторная адаптация играют ключевую роль в оптимизации спортивной работоспособности, но подобная адаптация происходит только тогда, когда в процессе тренировки происходит правильная стимуляция. Например, способность спортсмена использовать запас энергии для того, чтобы прыгать выше или толкать ядро дальше, оптимизируется посредством взрывных движений, как те, которые используются в плиометрическом тренинге. Однако мышечные компоненты - как, например, эластичные компоненты (сюда входят сухожилия, мышечные волокна и поперечные мостики) - не могут осуществлять эффективную транспортировку энергии, если спортсмен не укрепляет параллельные эластичные компоненты (напр., связки) и коллагеновые структуры (обеспечивающие стабильность и предохраняющие от травм). Если телу нужно выдерживать силы и воздействия, которым спортсмен подвергается, чтобы оптимизировать эластичные качества мышц, анатомическая адаптация должна предшествовать силовому тренингу.

Рефлекс - это непроизвольное мышечное сокращение, вызванное внешним стимулом[8]. Два основных компонента контроля рефлексов - это мышечные веретена и нервносухожильное веретено. Мышечные веретена реагируют на величину и скорость мышечного растяжения[9], тогда как нервно-сухожильное веретено (которое находится в местах соединения мышечных волокон с сухожильными пучками [8]) реагирует на мышечное напряжение. Когда в мышцах развивается высокая степень напряжения или растяжения, мышечные веретена и нервно-сухожильное веретено непроизвольно расслабляют мышцу, чтобы защитить ее от повреждения и травмы.

При пресечении этих ингибиторных реакций повышается спортивная работоспособность. Единственный способ добиться этого - адаптировать организм к более высокой степени напряжения, что повышает порог активизации рефлексов. Этой адаптации можно добиться посредством силового тренинга с использованием постепенно утяжеляющейся нагрузки (до 90 процентов повторного максимума или даже выше), таким образом вынуждая нервно-мышечную систему выдерживать более высокое напряжение, постоянно задействуя большее число быстрых волокон. В быстрых волокнах вырабатывается больше белка, что способствует увеличению силы.

Все спортивные движения выполняются по двигательной модели, которая называется циклом растяжение - сокращение и характеризуется тремя основными типами сокращения: эксцентрическим (удлинение), изометрическим (статичное положение) и концентрическим (сокращение). Например, волейболист, который быстро приседает и сразу подпрыгивает, чтобы блокировать атакующий удар, выполнил весь цикл растяжение - сокращение. То же касается и спортсмена, который опускает штангу на грудь и быстро выполняет взрывное движение, вытягивая руки. Чтобы полноценно пользоваться физиологическими качествами цикла растяжение - сокращение, мышца должна быстро переходить от удлинения к сокращению[10] (Schmidtble-icher, 1992).

Мышечный потенциал оптимизируется, когда активизируются все сложные факторы, влияющие на цикл растяжение - сокращение. Их влияние можно использовать для улучшения спортивных показателей только тогда, когда нервно-мышечная система стратегически стимулируется в правильной последовательности. Именно для достижения этой цели периодизация тренировки силы основывает планирование этапов на физиологической базе выбранного вида спорта. После составления эргогенного профиля (оценки вклада энергетических систем) выбранного вида спорта нужно пошагово распланировать этапы тренировки, чтобы перенести положительную нервно-мышечную адаптацию на практические показатели деятельности человека. Таким образом, понимание прикладной человеческой физиологии и установление цели в конце каждого этапа помогают тренерам и спортсменам интегрировать физиологические принципы в конкретную спортивную тренировку.

Повторим: скелетно-мышечная система тела - это сочетание костей, прикрепляемых друг к другу с помощью связок в области суставов. Пересекающие эти суставы мышцы дают силу для движения тела. Однако скелетные мышцы не сокращаются независимо друг от друга. Движения, выполняемые вокруг сустава, производятся несколькими мышцами, каждая из которых выполняет определенную роль, как уже было упомянуто выше.

Агонисты - или синергисты - это мышцы, которые взаимодействуют друг с другом при выполнении движения. В большинстве случаев, особенно если речь идет об умелом и опытном спортсмене, мышцы-антагонисты расслабляются, облегчая движение. Поскольку взаимодействие мышц группы агонистов и антагонистов напрямую влияет на спортивные движения, неправильное взаимодействие между этими группами может привести к порывистому или скованному движению. Следовательно, гладкость мышечного сокращения можно улучшить, если сосредоточиться на расслаблении антагонистов.

По этой причине одновременное сокращение (одновременная активизация мышц-агонистов и антагонистов, чтобы стабилизировать сустав) рекомендуется только на ранних стадиях реабилитации после травмы. Здоровому же спортсмену, особенно если он занимается силовыми видами спорта, не нужно выполнять упражнения (например, на нестабильной поверхности), вызывающие одновременные сокращения. К примеру, одной из основных характеристик элитных спринтеров является очень низкая миоэлектрическая активность мышц-антагонистов в каждой фазе цикла шага[11].

Первичные мышцы в первую очередь отвечают за суставное действие, которое является частью объемного силового движения или технической способности. Например, во время флексии локтя (сгибание бицепса) первичной мышцей является двуглавая мышца, тогда как трехглавая мышца (трицепс) выступает в роли антагониста и должна быть расслаблена, чтобы обеспечить беспрепятственное действие. В дополнение к этому стабилизаторы, или фиксаторы (обычно это меньшие мышцы), сокращаются изометрически, чтобы закрепить кость так, чтобы у первичных мышц была прочная база, откуда начинать натяжение. Мышцы других конечностей также могут принимать в этом участие, выступая в роли стабилизаторов, позволяющих первичным мышцам выполнять необходимые движения. Например, когда дзюдоист тянет соперника на себя, удерживая его за дзюдоги, мышцы его спины, ног и живота сокращаются изометрически, чтобы обеспечить стабильное основание для действия локтевых сгибателей (бицепсов), плечевых разгибателей (задние дельты) и лопаточных аддукторов и депрессоров (трапециевидная мышца и широчайшая мышца спины).

Если мышцу стимулировать коротким электрическим импульсом, спустя небольшой латентный период происходит ее сокращение. Такое сокращение называется «одиночное сокращение мышцы». Одиночное мышечное сокращение длится около 10-50 мс, причем оно достигает максимальной силы через 5-30 мс.

Каждое отдельное мышечное волокно подчиняется закону «все или ничего», т. е. при силе раздражения выше порогового уровня происходит полное сокращение с максимальной для данного волокна силой, а ступенчатое повышение силы сокращения по мере увеличения силы раздражения невозможно. Поскольку смешанная мышца состоит из множества волокон с различным уровнем чувствительности к возбуждению, сокращение всей мышцы может быть ступенчатым в зависимости от силы раздражения, при этом при сильных раздражениях происходит активация глубжележащих мышечных волокон.

Механизм скольжения филаментов[править | править код]

рис. 1. Схема образования поперечных связей — молекулярной основы сокращения саркомера

Укорочение мышцы происходит за счет укорочения образующих ее саркомеров, которые, в свою очередь, укорачиваются за счет скольжения относительно друг друга актиновых и миозиновых филаментов (а не укорочения самих белков). Теория скольжения филаментов была предложена учеными Huxley и Hanson (Huxley, 1974; рис. 1). (В 1954 г. две группы исследователей — X. Хаксли с Дж. Хэнсон и А. Хаксли с Р. Нидергерке — сформулировали теорию, объясняющую мышечное сокращение скольжением нитей. Независимо друг от друга они обнаружили, что длина диска А оставалась постоянной в расслабленном и укороченном саркомере. Это позволило предположить, что есть два набора нитей — актиновые и миозиновые, причем одни входят в промежутки между другими, и при изменении длины саркомера эти нити каким-то образом скользят друг по другу. Сейчас эта гипотеза принята почти всеми.)

Актин и миозин — два сократительных белка, которые способны вступать в химическое взаимодействие, приводящее к изменению их взаимного расположения в мышечной клетке. При этом цепочка миозина прикрепляется к актиновой нити с помощью целого ряда особых «головок», каждая из которых сидит на длинной пружинистой «шее». Когда происходит сцепление между миозиновой головкой и актиновой нитью, конформация комплекса этих двух белков изменяется, миозиновые цепочки продвигаются между актиновыми нитями и мышца в целом укорачивается (сокращается). Однако, чтобы химическая связь между головкой миозина и активной нитью образовалась, необходимо подготовить этот процесс, поскольку в спокойном (расслабленном) состоянии мышцы активные зоны белка актина заняты другим белком — тропохмиозином, который не позволяет актину вступить во взаимодействие с миозином. Именно для того, чтобы убрать тропомиозиновый «чехол» с актиновой нити, требуется быстрое выливание ионов кальция из цистерн саркоплазматического ретикулума, что происходит в результате прохождения через мембрану мышечной клетки потенциала действия. Кальций изменяет конформацию молекулы тропомиозина, в результате чего активные зоны молекулы актина открываются для присоединения головок миозина. Само это присоединение осуществляется с помощью так называемых водородных мостиков, которые очень прочно связывают две белковые молекулы — актин и миозин — и способны в таком связанном виде находиться очень долго.

Для отсоединения миозиновой головки от актина необходимо затратить энергию аденозинтрифосфа-та (АТФ), при этом миозин выступает в роли АТФазы (фермента, расщепляющего АТФ). Расщепление АТФ на аденозиндифосфат (АДФ) и неорганический фосфат (Ф) высвобождает энергию, разрушает связь между актином и миозином и возвращает головку миозина в исходное положение. В дальнейшем между актином и миозином могут снова образовываться поперечные связи.

При отсутствии АТФ актин-миозиновые связи не разрушаются. Это и является причиной трупного окоченения (rigor mortis) после смерти, т. к. останавливается выработка АТФ в организме — АТФ предотвращает мышечную ригидность.

Даже при мышечных сокращениях без видимого укорочения (изометрические сокращения, см. выше) активируется цикл формирования поперечных связей, мышца потребляет АТФ и выделяет тепло. Головка миозина многократно присоединяется на одно и то же место связывания актина, и вся система миофиламентов остается неподвижной.

Внимание: Сократительные элементы мышц актин и миозин сами по себе не способны к укорочению. Мышечное укорочение является следствием взаимного скольжения миофиламентов относительно друг друга (механизм скольжения филаментов).

Как же образование поперечных связей (водородных мостиков) переходит в движение? Одиночный саркомер за один цикл укорачивается приблизительно на 5-10 нм, т.е. примерно на 1 % своей общей длины. За счет быстрого повторения цикла поперечных связей возможно укорочение на 0,4 мкм, или 20% своей длины. Поскольку каждая миофибрилла состоит из множества саркомеров и во всех них одновременно (но не синхронно) образуются поперечные связи, суммарно их работа приводит к видимому укорочению всей мышцы. Передача силы этого укорочения происходит через Z-линии миофибрилл, а также концы сухожилий, прикрепленных к костям, в результате чего и возникает движение в суставах, через которые мышцы реализуют перемещение в пространстве частей тела или продвижение всего тела.

Связь между длиной саркомера и силой мышечных сокращений[править | править код]

рис. 2. Зависимость силы сокращений от длины саркомера

Наибольшую силу сокращений мышечные волокна развивают при длине 2-2,2 мкм. При сильном растяжении или укорочении саркомеров сила сокращений снижается (рис. 2). Эту зависимость можно объяснить механизмом скольжения филаментов: при указанной длине саркомеров наложение миозиновых и актиновых волокон оптимально; при большем укорочении миофиламенты перекрываются слишком сильно, а при растяжении наложение миофиламентов недостаточно для развития достаточной силы сокращений.

Скорость укорочения мышечных волокон[править | править код]

рис.3. Зависимость скорости укорочения от нагрузки

Скорость укорочения мышцы зависит от нагрузки на эту мышцу (закон Хилла, рис. 3). Она максимальна без нагрузки, а при максимальной нагрузке практически равна нулю, что соответствует изометрическому сокращению, при котором мышца развивает силу, не изменяя своей длины.

Влияние растяжения на силу сокращений: кривая растяжения в покое[править | править код]

рис. 4. Влияние предварительного растяжения на силу сокращения мышцы. Предварительное растяжение повышает напряжение мышцы. Результирующая кривая, описывающая взаимоотношения длины мышцы и силы ее сокращения при воздействии активного и пассивного растяжения, демонстрирует более высокое изометрическое напряжение, чем в покое

Важным фактором, влияющим на силу сокращений, является величина растяжения мышцы. Тяга за конец мышцы и натяжение мышечных волокон называются пассивным растяжением. Мышца обладает эластическими свойствами, однако в отличие от стальной пружины зависимость напряжения от растяжения не линейна, а образует дугообразную кривую. С увеличением растяжения повышается и напряжение мышцы, но до определенного максимума. Кривая, описывающая эти взаимоотношения, называется кривой растяжения в покое.

Данный физиологический механизм объясняется эластическими элементами мышцы — эластичностью сарколеммы и соединительной ткани, располагающимися параллельно сократительным мышечным волокнам.

Также при растяжении изменяется и наложение друг на друга миофиламентов, однако это не оказывает влияния на кривую растяжения, т. к. в покое не образуются поперечные связи между актином и миозином. Предварительное растяжение (пассивное растяжение) суммируется с силой изометрических сокращений (активная сила сокращений).

  1. ↑ Harrison BC. et al. 2011. lib or not lib? Regulation of myosin heavy chain gene expression in mice and men. Skeletal Muscle. 1 (1): 5. doi: 10.1186/2044-5040-1-5.
  2. ↑ Andersen, J.L., et al. 1994. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: Influence of training. Acta Physiologica Scandinavica 151 (2): 135-42.
  3. 3,03,1 Andersen T.L, Aagaard P. 2000. Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve. 23 (7): 1095-104.
  4. ↑ Andersen, L.L., et al. 2010. Early and late rate of force development: Differential adaptive responses to resistance training? Scandinavian Journal of Medicine and Science in Sports 20 (1): el62-69. doi:10.1111/j.l600-0838.2009.00933.x.
  5. ↑ Anderson, K., and Behm, D.G. 2004. Maintenance of EMG activity and loss of force output with instability. Journal of Strength and Conditioning Research 18:637-40.
  6. ↑ Aagaard, R, et al. 2011. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scandinavian Journal of Medicine and Science in Sports 21 (6): e298-307. doi:10.1111/j. 1600-0838.2010.01283.x.
  7. ↑ Henneman, E., Somjen, G., and Carpenter, D.O. 1965. Functional significance of cell size in spinal motoneurons./. Neurophysiol. 28:560-580.
  8. 8,08,1 Latash, M.L. 1998. Neurophysiological basis of movement. Champaign, IL: Human Kinetics.
  9. ↑ Brooks, G.A., Fahey, T.D., and White, T.P. 1996. Exercise physiology: Human bioenergetics and its applications. 2nd ed. Mountainview, CA: Mayfield.
  10. ↑ Schmidtbleicher, D. 1992. Training for power events. In Strength and power in sport, ed. P.V. Komi, 381-95. Oxford, UK: Blackwell Scientific.
  11. ↑ Wiemann, K., and Tidow, G. 1995. Relative activity of hip and knee extensors in sprinting—Implications for training. New Studies in Athletics 10 (1): 29-49.

Механизм мышечного сокращения. Нормальная физиология

Читайте также

2. Механизмы мышечного сокращения

2. Механизмы мышечного сокращения Электрохимический этап мышечного сокращения.1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина (АХ) с холинорецепторами приводит к их активации и

4. Сокращения в рецептах

4. Сокращения в рецептах При выписывании рецептов врачи пользуются общепринятыми сокращениями. Обычно сокращают названия лекарственных форм, названия органов (частей) растений, а также стандартные рецептурные формулировки. Такие сокращения содержат, как правило, одну

1. Везикулярное дыхание: механизм, физиологические и патологические варианты. Бронхиальное дыхание, его характеристика, разновидности, механизм образования

1. Везикулярное дыхание: механизм, физиологические и патологические варианты. Бронхиальное дыхание, его характеристика, разновидности, механизм образования Шумы, возникающие в процессе дыхания, делят на физиологические (или основные) и патологические (или

Активная регуляция мышечного тонуса

Активная регуляция мышечного тонуса Важная роль в психологических исследованиях и теоретическом обосновании эффекта релаксации принадлежит Е. Jacobson. Изучая методы объективной регистрации эмоциональных состояний, он установил, что при отрицательных эмоциональных

Активация мышечного шлема

Активация мышечного шлема Для чего? Упражнение помогает активизировать «венечную звезду».Всеми пальцами одной руки пройдитесь от лба к затылку, а одновременно с ними пальцами другой – от шеи к затылку. Они встретятся в венечной точке. Затем обе руки должны проследовать

Высвобождение мышечного напряжения

Высвобождение мышечного напряжения Любой хронический мышечный спазм ограничивает свободу движения и выражения индивида. Следовательно, это ограничение способности получения удовольствия. Целью биоэнергетической терапии в таком случае является восстановление

Глава IX КАК СКОНСТРУИРОВАЛ БЫ МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ КОНСТРУКТОР ДВИГАТЕЛЕЙ

Глава IX КАК СКОНСТРУИРОВАЛ БЫ МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ КОНСТРУКТОР ДВИГАТЕЛЕЙ Общие соображенияДля того, чтобы сознательно и рационально следить за своим здоровьем, каждому мыслящему человеку надо знать, что происходит в его мышцах, когда они по его желанию то

Упражнения для укрепления «мышечного корсета»

Упражнения для укрепления «мышечного корсета» Исходное положение – лежа на животе, подбородок на тыльной поверхности кистей, положенных одна на другую.4. Перевести руки на пояс, приподнимая голову и плечи, лопатки соединить, живот не поднимать, удерживать принятое

Укрепление мышечного тонуса

Укрепление мышечного тонуса Коснитесь пальцами левой руки бицепса правой. Напрягите его. Теперь положите руку на живот и напрягите мышцы брюшного пресса.Что вы почувствовали, когда сделали это? Крепкие мускулы? Или они все лее остались мягковатыми, как вы ни пытались

Активное снятие мышечного напряжения

Активное снятие мышечного напряжения • Плавание.• Езда на велосипеде.• Бег трусцой, бег по пересеченной местности.• И в футбол.• Игра в (настольный) теннис.• Занятия в оздоровительных группах.Участие в лыжных гонках, занятия горнолыжным спортом.• Бег на коньках,

Упражнения для выработки мышечного корсета.

Упражнения для выработки мышечного корсета. 1. И. П. - лежа на животе, подбородок на тыльной поверхности кистей, положенных друг на друга. Перевести руки на пояс, приподнять голову и плечи, лопатки соединить, дыхание не задерживать. Сохранять принятое положение до

Молекулярные механизмы мышечного сокращения // Гусев Н. Б. ≪ Scisne?

Молекулярные механизмы мышечного сокращения (Гусев Н. Б., 2000)
Московский государственный университет им. М. В. Ломоносова
Соросовский образовательный журнал, т. 6, №8, 2000. С. 24–32.

Скачать: [pdf 320 KB]


В основе сокращения мышц лежит взаимное перемещение двух систем нитей, образованных актином и миозином. АТФ гидролизуется в активном центре, расположенном в головках миозина. Гидролиз сопровождается изменением ориентации головок миозина и перемещением нитей актина. Регуляция сокращения обеспечивается специальными Са-связывающими белками, расположенными на нитях актина или миозина.

Введение. Различные формы подвижности характерны практически для всех живых организмов. В ходе эволюции у животных возникли специальные клетки и ткани, главной функцией которых является генерация движения. Мышцы являются высоко специализированными органами, способными за счет гидролиза АТФ генерировать механические усилия и обеспечивать перемещение животных в пространстве. При этом в основе сокращения мышц практически всех типов лежит перемещение двух систем белковых нитей (филаментов), построенных в основном из актина и миозина.

Ультраструктура мышц. Для высокоэффективного преобразования энергии АТФ в механическую работу мышцы должны обладать строго упорядоченной структурой. Действительно, упаковка сократительных белков в мышце сравнима с упаковкой атомов и молекул в составе кристалла. Рассмотрим строение скелетной мышцы (рис. 1).

Рис. 1. Ультраструктура сократительного аппарата и иллюстрация модели скользящих нитей (по [5] с изменениями)

Веретенообразная мышца состоит из пучков мышечных волокон. Зрелое мышечное волокно практически полностью заполнено миофибриллами - цилиндрическими образованиями, сформированными из системы перекрывающихся толстых и тонких нитей, образованных сократительными белками. В миофибриллах скелетных мышц наблюдается правильное чередование более светлых и более темных участков. Поэтому часто скелетные мышцы называют поперечнополосатыми. Миофибрилла состоит из одинаковых повторяющихся элементов, так называемых саркомеров (см. рис. 1). Саркомер ограничен с двух сторон Z-дисками. К этим дискам с обеих сторон прикрепляются тонкие актиновые нити. Нити актина обладают низкой плотностью и поэтому под микроскопом кажутся более прозрачными или более светлыми. Эти прозрачные, светлые области, располагающиеся с обеих сторон от Z-диска, получили название изотропных зон (или I-зон) (см. рис.1). В середине саркомера располагается система толстых нитей, построенных преимущественно из другого сократительного белка, миозина. Эта часть саркомера обладает большей плотностью и образует более темную анизотропную зону (или А-зону).

В ходе сокращения миозин становится способным взаимодействовать с актином и начинает тянуть нити актина к центру саркомера (см. рис. 1). Вследствие такого движения уменьшается длина каждого саркомера и всей мышцы в целом. Важно отметить, что при такой системе генерации движения, получившей название системы скользящих нитей, не изменяется длина нитей (ни нитей актина, ни нитей миозина). Укорочение является следствием лишь перемещения нитей друг относительно друга.

Сигналом для начала мышечного сокращения является повышение концентрации Са2+ внутри клетки. Концентрация кальция в клетке регулируется с помощью специальных кальциевых насосов, встроенных в наружную мембрану и мембраны саркоплазматического ретикулума, который оплетает миофибриллы (см. рис. 1). Приведенная схема дает общее представление о механизме сокращения мышц. Для понимания молекулярных основ этого процесса обратимся к анализу свойств основных сократительных белков.

Строение и свойства актина. Актин был открыт в 1948 году венгерским биохимиком Бруно Штраубом. Название этот белок получил из-за своей способности активировать (отсюда актин) гидролиз АТФ, катализируемый миозином. Актин является одним из вездесущих белков, он обнаружен практически во всех клетках животных и растений. Этот белок очень консервативен.

Мономеры актина (их часто называют G-актином, то есть глобулярным актином) могут взаимодействовать друг с другом, образуя так называемый фибриллярный (или F-актин). Процесс полимеризации можно инициировать повысив концентрацию одно- или двухвалентных катионов или добавив специальные белки. Процесс полимеризации становится возможным потому, что мономеры актина могут узнавать друг друга и образовывать межмолекулярные контакты.

Полимеризованный актин внешне похож на две скрученные друг относительно друга нитки бус, где каждая бусина представляет собой мономер актина (рис. 2, а). Молекула актина далеко не симметрична, поэтому для того, чтобы стала видна эта асимметрия, часть шарика актина на рис. 2, б затемнена. Процесс полимеризации актина строго упорядочен, и мономеры актина упаковываются в полимер только в определенной ориентации. Поэтому мономеры, расположенные на одном конце полимера, повернуты к растворителю одним, например, темным концом, а мономеры, расположенные на другом конце полимера, обращены к растворителю другим (светлым) концом (рис. 2, б). Вероятность присоединения мономера на темном и светлом концах полимера различна. Тот конец полимера, где скорость полимеризации больше, называют плюс-концом, а противоположный конец полимера обозначают как минус-конец.

Рис. 2. Строение актинового филамента (а), влияние актинсвязывающих белков на полимеризацию G-актина и образование структурных элементов цитоскелета (б). Для иллюстрации асимметрии глобулярного актина и полярности нити фибриллярного актина часть шарика актина заштрихована (по [6] с модификациями)

Актин является уникальным строительным материалом, широко используемым клеткой для построения различных элементов цитоскелета и сократительного аппарата. Использование актина для строительных нужд клетки обусловлено тем, что процессы полимеризации и деполимеризации актина можно легко регулировать с помощью специальных, связывающихся с актином белков. Есть белки, связывающиеся с мономерным актином (например, профилин, рис. 2, б). Эти белки, находясь в комплексе с глобулярным актином, препятствуют его полимеризации. Есть специальные белки, которые, как ножницы, разрезают уже сформировавшиеся нити актина на более короткие фрагменты. Некоторые белки преимущественно связываются и формируют шапочку ("кепируют" от английского слова "cap", шапка) на плюс-конце полимерного актина. Другие белки кепируют минус-конец актина. Существуют белки, которые могут сшивать уже сформировавшиеся нити актина. При этом образуются либо крупноячеистые гибкие сети, либо упорядоченные жесткие пучки нитей актина (рис. 2, б).

Все нити актина в саркомере имеют постоянную длину и правильную ориентацию, при этом плюс-концы филаментов располагаются в Z-диске, а минус-концы - в центральной части саркомера. Вследствие такой упаковки нити актина, расположенные в левой и правой частях саркомера, имеют противоположную направленность (это показано на рис. 1 в виде противоположно направленных галочек на нитях актина в нижней части рис. 1).

Рис. 3. Строение молекулы миозина скелетных мышц (а) и упрощенная схема одной из возможных моделей упаковки миозина в биполярный толстый филамент (б) (по [7] с модификациями)

Строение и свойства миозина. В настоящее время описано несколько (более десяти) различных видов молекул миозина. Рассмотрим строение наиболее подробно изученного миозина скелетных мышц (рис. 3, а). В состав молекулы миозина скелетных мышц входят шесть полипептидных цепей - две так называемые тяжелые цепи миозина и четыре легкие цепи миозина (ЛЦМ). Эти цепи прочно ассоциированы друг с другом (нековалентными связями) и образуют единый ансамбль, который собственно и является молекулой миозина.

Тяжелые цепи миозина имеют большую молекулярную массу (200000-250000) и сильно асимметричную структуру (рис. 3, а). У каждой тяжелой цепи есть длинный спирализованный хвост и маленькая компактная грушевидная головка. Спирализованные хвосты тяжелых цепей миозина скручены между собой наподобие каната (рис. 3, а). Этот канат обладает довольно высокой жесткостью, и поэтому хвост молекулы миозина образуют палочкообразные структуры. В нескольких местах жесткая структура хвоста нарушена. В этих местах располагаются так называемые шарнирные участки, обеспечивающие подвижность отдельных частей молекулы миозина. Шарнирные участки легко подвергаются расщеплению под действием протеолитических (гидролитических) ферментов, что приводит к образованию фрагментов, сохраняющих определенные свойства неповрежденной молекулы миозина (рис. 3, а).

В области шейки, то есть при переходе грушевидной головки тяжелой цепи миозина в спиральный хвост, располагаются короткие легкие цепи миозина, имеющие молекулярную массу 18000-28000 (эти цепи изображены в виде дуг на рис. 3, а). С каждой головкой тяжелой цепи миозина связаны одна регуляторная (красная дуга) и одна существенная (синяя дуга) легкая цепь миозина. Обе легкие цепи миозина тем или иным способом влияют на способность миозина взаимодействовать с актином и участвуют в регуляции мышечного сокращения.

Палочкообразные хвосты могут слипаться друг с другом за счет электростатических взаимодействий (рис. 3, б). При этом молекулы миозина могут располагаться либо параллельно, либо антипараллельно друг относительно друга (рис. 3, б). Параллельные молекулы миозина смещены друг относительно друга на определенное расстояние. При этом головки вместе со связанными с ними легкими цепями миозина располагаются на цилиндрической поверхности (образованной хвостами молекул миозина) в виде своеобразных выступов-ярусов.

Хвосты миозина скелетных мышц могут упаковываться как в параллельном, так и в антипараллельном направлении. Комбинация параллельной и антипараллельной упаковок приводит к формированию так называемых биполярных (то есть двухполюсных) филаментов миозина (рис. 3, б ). Такой филамент состоит примерно из 300 молекул миозина. Половина молекул миозина повернута своими головами в одну сторону, а вторая половина - в другую сторону. Биполярный миозиновый филамент располагается в центральной части саркомера (см. рис. 1). Разная направленность головок миозина в левой и правой частях толстого филамента обозначена разнонаправленными галочками на нитях миозина в нижней части рис. 1.

Главной "моторной" частью миозина скелетных мышц является головка тяжелой цепи миозина вместе со связанной с ней легкими цепями миозина. Головки миозина могут дотягиваться до нитей актина и контактировать с ними. При замыкании таких контактов образуются так называемые поперечные мостики, которые собственно генерируют тянущее усилие и обеспечивают скольжение нитей актина относительно миозина. Попытаемся представить, как работает такой одиночный поперечный мостик.

Современные представления о механизме функционирования головок миозина. В 1993 году удалось закристаллизовать изолированные и специальным образом модифицированные головки миозина. Это позволило установить структуру головок миозина и сформулировать гипотезы о том, каким образом головки миозина могут перемещать нити актина.

Рис. 4. Строение головки миозина (а) и гипотетиче- ский механизм перемещения головки миозина по поверхности актина (б)
а – головка миозина ориентирована таким образом, что актинсвязывающий центр (окрашен красным) расположен в правой части. Ясно видна щель ("рас- крытая пасть"), разделяющая две половинки (две "челюсти") актинсвязывающего центра
б – схема одиночного шага головки миозина по нити актина. Актин изображен в виде гирлянды шариков. В нижней части головки изображена щель, разделя- ющая две части актинсвязывающего центра. Адено- зин обозначен А, а фосфатные группы – в виде ма- леньких кружков. Между состояниями 5 и 1 схемати- чески показана переориентация шейки миозина, происходящая при генерации тянущего усилия (по [1] с изменениями и упрощениями)

Оказалось, что в головке миозина можно выявить три основные части [1] (рис. 4). N-концевая часть головки миозина с молекулярной массой около 25000 (обозначена зеленым цветом на рис. 4, а) формирует АТФ-связывающий центр. Центральная часть головки миозина с молекулярной массой 50000 (обозначена красным цветом на рис. 4, а) содержит в своем составе центр связывания актина. Наконец, С-концевая часть с молекулярной массой 20000 (обозначена фиолетовым цветом на рис. 4, а) образует как бы каркас всей головки. Эта часть соединена гибким шарнирным сочленением со спирализованным хвостом тяжелых цепей миозина (см. рис. 4, а). В С-концевой части головки миозина располагаются центры связывания существенной (желтая на рис. 4, а) и регуляторной (светло-фиолетовая на рис. 4, а) легких цепей миозина. Общий контур головки миозина напоминает змею с приоткрытой "пастью". Челюсти этой "пасти" (окрашены красным на рис. 4, а) формируют актинсвязывающий центр. Предполагается, что в ходе гидролиза АТФ происходит периодическое открывание и закрывание этой "пасти". В зависимости от положения "челюстей" головка миозина более или менее прочно взаимодействует с актином.

Рассмотрим цикл гидролиза АТФ и перемещение головки по актину. В исходном состоянии головка миозина не насыщена АТФ, "пасть" закрыта, актинсвязывающие центры ("челюсти") сближены и головка прочно взаимодействует с актином. При этом спирализованная "шейка" ориентирована под углом 45? относительно нити актина (состояние 1 на рис. 4, б). При связывании АТФ в активном центре "пасть" раскрывается, актинсвязывающие участки, расположенные на двух "челюстях" пасти, удаляются друг от друга, прочность связи миозина с актином ослабевает и головка диссоциирует от нити актина (состояние 2 на рис. 4, б). Гидролиз АТФ в активном центре диссоциировавшей от актина головки миозина приводит к закрыванию щели активного центра, изменению ориентации "челюстей" и переориентации спирализованной шейки. После гидролиза АТФ до АДФ и неорганического фосфата шейка оказывается повернутой на 45? и занимает положение, перпендикулярное длинной оси нити актина (состояние 3 на рис. 4, б). После всех этих событий головка миозина вновь оказывается способной взаимодействовать с актином. Однако если в состоянии 1 головка контактировала со вторым сверху мономером актина, то сейчас из-за поворота шейки головка зацепляется и взаимодействует уже с третьим сверху мономером актина (состояние 4 на рис. 4, б). Образование комплекса с актином вызывает структурные изменения в головке миозина. Эти изменения позволяют выбросить из активного центра миозина неорганический фосфат, который образовался в ходе гидролиза АТФ. Одновременно происходит переориентация шейки. Она занимает положение под углом 45° по отношению к нити актина и в ходе переориентации развивается тянущее усилие (состояние 5 на рис. 4, б). Головка миозина проталкивает нить актина на шаг вперед. После этого из активного центра выбрасывается другой продукт реакции, АДФ. Цикл замыкается, и головка переходит в исходное состояние (состояние 1 на рис. 4, б ).

Каждая из головок генерирует маленькое тянущее усилие (несколько пиконьютонов). Однако все эти маленькие усилия суммируются, и вследствие этого мышца может развивать достаточно большие напряжения. Очевидно, что, чем больше область перекрытия тонких и толстых филаментов (то есть чем больше головок миозина может зацепиться за нити актина), тем большее усилие может генерироваться мышцей.

Механизмы регуляции мышечного сокращения. Мышца не могла бы выполнять свою функцию, если она постоянно находилась бы в сокращенном состоянии. Для эффективной работы необходимо, чтобы в мышце были специальные "выключатели", которые позволяли бы головке миозина шагать по нити актина только в строго определенных условиях (например, при химической или электрической стимуляции мышцы). Стимуляция приводит к кратковременному увеличению концентрации Са2+ внутри мышцы с 10-7 до 10-5 М. Ионы Са2+ являются сигналом для начала мышечного сокращения.

Таким образом, для регуляции сокращения необходимы специальные регуляторные системы, которые могли бы отслеживать изменения концентрации Са2+ внутри клетки. Регуляторные белки могут располагаться на тонком и толстом филаментах или находиться в цитоплазме. В зависимости от того, где располагаются Са-связывающие белки, принято различать так называемый миозиновый и актиновый типы регуляции сократительной активности.

Миозиновый тип регуляции сократительной активности. Простейший способ миозиновой регуляции описан для некоторых мышц моллюсков. Миозин моллюсков по своему составу не отличается от миозина скелетных мышц позвоночных. В обоих случаях в состав миозина входят две тяжелые цепи (с молекулярной массой 200000-250000) и четыре легкие цепи (с молекулярной массой 18000-28000) (см. рис. 3). Считается, что при отсутствии Са2+ легкие цепи обернуты вокруг шарнирного участка тяжелой цепи миозина. При этом подвижность шарнира сильно ограничена. Головка миозина не может совершать колебательных движений, она как бы заморожена в одном положении относительно ствола толстого филамента (рис. 5, а). Очевидно, что в таком состоянии головка не может осуществлять колебательные ("загребательные") движения и вследствие этого не может перемещать нить актина. При связывании Са2+ происходят изменения структуры легких и тяжелых цепей миозина. Резко повышается подвижность в области шарнира. Теперь после гидролиза АТФ головка миозина может осуществлять колебательные движения и проталкивать нити актина относительно миозина.

Для гладких мышц позвоночных (таких, как мышцы сосудов, матка), а также для некоторых форм немышечной подвижности (изменение формы тромбоцитов) также характерен так называемый миозиновый тип регуляции. Как и в случае мышц моллюсков, миозиновый тип регуляции гладких мышц связан с изменением структуры легких цепей миозина. Однако в случае гладких мышц этот механизм заметно усложнен.

Оказалось, что с миозиновыми филаментами гладких мышц связан специальный фермент. Этот фермент получил название "киназа легких цепей миозина" (КЛЦМ). Киназа легких цепей миозина относится к группе протеинкиназ, ферментов, способных переносить концевой остаток фосфата АТФ на оксигруппы остатков серина или треонина белка. В состоянии покоя при низкой концентрации Са2+ в цитоплазме киназа легких цепей миозина неактивна. Это связано с тем, что в структуре фермента есть специальный ингибиторный (блокирующий активность) участок. Ингибиторный участок попадает в активный центр фермента и, не давая возможности взаимодействовать с истинным субстратом, полностью блокирует активность фермента [2]. Таким образом, фермент как бы усыпляет сам себя.

Рис. 5. Миозиновый тип регуляции сократительной активности.
А – гипотетическая схема механизма регуляции сокращения мышц моллюсков. Изображе- ны одна головка миозина с легкими цепями и нить актина в виде пяти кружков. В состоянии расслабления (а) легкие цепи миозина уменьшают подвижность шарнира, соединяющего головку со стволом миозинового филамента. После связывания Са2+ (б) подвижность шарнира повышается, головка миозина осуществляет колебательные движения и проталкивает актин относительно миозина.
Б – схема регуляции сократительной активности гладких мышц позвоночных. СаМ – каль- модулин; КЛЦМ – киназа легких цепей миозина; ФЛЦМ – фосфатаза легких цепей миозина; Р-миозин – фосфорилированный миозин (по [3] с упрощениями и изменениями)

В цитоплазме гладких мышц есть специальный белок кальмодулин, содержащий в своей структуре четыре Са-связывающих центра [2]. Связывание Са2+ вызывает изменения в структуре кальмодулина. Насыщенный Са2+ кальмодулин оказывается способным взаимодействовать с КЛЦМ (рис. 5, Б). Посадка кальмодулина приводит к удалению ингибиторного участка из активного центра, и киназа легких цепей миозина как бы просыпается. Фермент начинает узнавать свой субстрат и переносит остаток фосфата от АТФ на один (или два) остатка серина, расположенных около N-конца регуляторной легкой цепи миозина. Фосфорилирование регуляторной легкой цепи миозина приводит к значительным изменениям структуры как самой легкой цепи, так, по-видимому, и тяжелой цепи миозина в области ее контакта с легкой цепью. Только после фосфорилирования легкой цепи миозин оказывается способным взаимодействовать с актином и начинается мышечное сокращение (рис. 5, Б).

Понижение концентрации кальция в клетке вызывает диссоциацию ионов Са2+ из катионсвязывающих центров кальмодулина. Кальмодулин диссоциирует от киназы легких цепей миозина, которая тут же теряет свою активность под действием своего же ингибиторного пептида и опять как бы впадает в спячку. Но пока легкие цепи миозина находятся в фосфорилированном состоянии, миозин продолжает осуществлять циклическое протягивание нитей актина. Для того чтобы остановить циклические движения головок, надо удалить остаток фосфата с регуляторной легкой цепи миозина. Этот процесс осуществляется под действием другого фермента - так называемой фосфатазы легких цепей миозина (ФЛЦМ на рис. 5, Б ). Фосфатаза катализирует быстрое удаление остатков фосфата с регуляторной легкой цепи миозина. Дефосфорилированный миозин не способен осуществлять циклические движения своей головкой и подтягивать нити актина. Наступает расслабление (рис. 5, Б ).

Таким образом, как в мышцах моллюсков, так и в гладких мышцах позвоночных основой регуляции является изменение структуры легких цепей миозина.

Рис. 6. Структурные основы актинового типа регуляции сокращения мышц
а – актиновый филамент с расположенным в канавках спирали непрерывным тяжем молекул тропомиозина;
б – взаимное расположение тонких и толстых филаментов в саркомере поперечнополосатых и сердечных мышц. Укрупненное изображение части актинового филамента в состоянии расслабления (в) и сокращения (г). TnC, TnI и TnT соответственно тропонин С, тропонин I и тропонин Т. Буквами N, I и C обозначены соответственно N-концевая, ингибиторная и С-концевая части тропонина I (по [4] с изменениями и упрощениями)

Актиновый механизм регуляции мышечного сокращения. Связанный с актином механизм регуляции сократительной активности характерен для поперечнополосатых скелетных мышц позвоночных и сердечной мышцы. Нити фибриллярного актина в скелетных и сердечных мышцах имеют вид двойной нитки бус (рис. 2 и 6, а). Нитки бус актина перекручены друг относительно друга, поэтому с двух сторон филамента образуются канавки. В глубине этих канавок размещается сильно спирализованный белок тропомиозин. Каждая молекула тропомиозина состоит из двух одинаковых (или очень похожих друг на друга) полипептидных цепей, которые перекручены друг относительно друга наподобие девичьей косы. Располагаясь внутри канавки актина, палочкообразная молекула тропомиозина контактирует с семью мономерами актина. Каждая молекула тропомиозина взаимодействует не только с мономерами актина, но и с предыдущей и последующей молекулами тропомиозина, вследствие чего внутри всей канавки актина формируется непрерывный тяж молекул тропомиозина. Таким образом, внутри всего актинового филамента проложен своеобразный кабель, образованный молекулами тропомиозина.

На актиновом филаменте помимо тропомиозина располагается еще и тропониновый комплекс. Этот комплекс состоит из трех компонентов, каждый из которых выполняет характерные функции [4]. Первый компонент тропонина, тропонин С, способен связывать Са2+ (аббревиатура С указывает именно на способность этого белка связывать Са2+). По структуре и свойствам тропонин С очень похож на кальмодулин (подробнее см. [2]). Второй компонент тропонина, тропонин I, был обозначен так потому, что он может ингибировать (подавлять) гидролиз АТФ актомиозином. Наконец, третий компонент тропонина называется тропонином Т потому, что этот белок прикрепляет тропонин к тропомиозину. Полный тропониновый комплекс имеет форму запятой, размеры которой сопоставимы с размерами 2-3 мономеров актина (см. рис. 6, в, г). Один тропониновый комплекс приходится на семь мономеров актина.

В состоянии расслабления концентрация Са2+ в цитоплазме очень мала. Регуляторные центры тропонина С не насыщены Са2+. Именно поэтому тропонин С только своим С-концом слабо взаимодействует с тропонином I (рис. 6, в). Ингибиторный и С-концевой участки тропонина I взаимодействуют с актином и с помощью тропонина Т выталкивают тропомиозин из канавки на поверхность актина. До тех пор пока тропомиозин располагается на периферии канавки, доступность актина для головок миозина ограниченна. Контакт актина с миозином возможен, но площадь этого контакта мала, вследствие чего головка миозина не может переместиться по поверхности актина и не может генерировать тянущее усилие.

При повышении концентрации Са2+ в цитоплазме происходит насыщение регуляторных центров тропонина С (рис. 6, г). Тропонин С образует прочный комплекс с тропонином I. При этом ингибиторная и С-концевая части тропонина I диссоциируют от актина. Теперь ничто не удерживает тропомиозин на поверхности актина, и он закатывается на дно канавки. Такое перемещение тропомиозина увеличивает доступность актина для головок миозина, увеличивается площадь контакта актина с миозином, и головки миозина приобретают возможность не только контактировать с актином, но и прокатываться по его поверхности, генерируя при этом тянущее усилие.

Таким образом, Са2+ вызывает изменение структуры тропонинового комплекса. Эти изменения структуры тропонина приводят к перемещению тропомиозина. Из-за того, что молекулы тропомиозина взаимодействуют друг с другом, изменения положения одного тропомиозина повлечет за собой перемещение предыдущей и последующей молекул тропомиозина. Именно поэтому локальные изменения структуры тропонина и тропомиозина быстро распространяются вдоль всего актинового филамента.

Заключение. Мышцы являются наиболее совершенным и специализированным приспособлением для перемещения в пространстве. Сокращение мышц осуществляется за счет скольжения двух систем нитей, образованных основными сократительными белками (актином и миозином) друг относительно друга. Скольжение нитей становится возможным за счет циклического замыкания и размыкания контактов между нитями актина и миозина. Эти контакты формируются головками миозина, которые могут гидролизовать АТФ и за счет освободившейся энергии генерировать тянущее усилие.

Регуляция сокращения мышц обеспечивается специальными Са-связывающими белками, которые могут располагаться либо на миозиновом, либо на актиновом филаменте. В одних типах мышц (например, в гладких мышцах позвоночных) главная роль принадлежит регуляторным белкам, расположенным на миозиновом филаменте, а в других типах мышц (скелетные и сердечные мышцы позвоночных) главная роль принадлежит регуляторным белкам, расположенным на актиновом филаменте.

Литература

  1. Rayment I., Rypniewski W.R., Schmidt-Base K. et al.// Science. 1993. Vol. 261. P. 50-58.
  2. Гусев Н.Б. Внутриклеточные Са-связывающие белки // Соросовский Образовательный Журнал. 1998. № 5. С. 2-16.
  3. Walsh M. // Mol. Cell. Biochem. 1994. Vol. 135. P. 21-41.
  4. Farah C.S., Reinach F.C. // FASEB J. 1995. Vol. 9. P. 755-767.
  5. Davidson V.L., Sittman D.B. Biochemistry. Philadelphia, Harwal Publ., 1994. 584 p.
  6. Wray M., Weeds A. // Nature. 1990. Vol. 344. P. 292-294.
  7. Pollack G.A. Muscles and Molecules. Seattle: Ebner and Sons Publ., 1990. 300 p.

Рецензент статьи Н. К. Наградова


Николай Борисович Гусев, доктор биологических наук, профессор кафедры биохимии биологического факультета МГУ. Область научных интересов - структура белков, биохимия мышц. Автор более 90 научных работ.

Состав, строение и функции миофибриллы

Описан состав, строение и функции миофибриллы. При силовой тренировке наблюдается миофибриллярная гипертрофия – увеличение количества и объема миофибрилл. У детей гипертрофия миофибрилл происходит за счет их роста в длину, при силовой тренировке – в толщину.

Состав, строение и функции миофибриллы

Общая характеристика

Для того чтобы понять, какие механизмы лежат в основе гипертрофии мышц, нужно рассмотреть состав, строение (структуру) и функции миофибриллы.

Миофибриллы представляют собой органеллы специального назначения мышечного волокна. Это – тонкие белковые нити, расположенные вдоль мышечного волокна параллельно друг другу (рис.1). Миофибриллы, в отличие от других компонентов мышечного волокна, не имеет оболочки. Роль оболочки играет саркоплазматический ретикулум, который окружает каждую миофибриллу в виде «муфточки». Миофибриллы идут от одного конца мышечного волокна до другого, их длина соответствует длине волокна.

Рис.1. Миофибриллы мышечного волокна, окруженные саркоплазматическим ретикулумом

Функции миофибриллы

Миофибриллы – основные сократительные элементы мышечного волокна, поэтому их основная функция — укорочение под воздействием нервного импульса. Вследствие этого мышца развивает определенную силу.

Состав миофибриллы

Миофибриллы состоят из элементов, имеющих цилиндрическую форму – саркомеров, которые расположены последовательно, друг за другом вдоль миофибриллы (рис.2). Друг от друга саркомеры отделены Z-дисками (в плоскости – Z-линии). Миофибриллу можно сравнить со стеблем бамбука, длинные секции которого соединяются друг с другом толстыми дисками. Длина одного саркомера в среднем равна 2,5 мкм, поэтому в одной миофибрилле длиной 5 см находится до 20000 саркомеров.

Рис.2. Миофибрилла состоит из саркомеров

Расположение в мышечном волокне

В мышечном волокне может содержаться от нескольких десятков до нескольких тысяч миофибрилл. Каждая миофибрилла в мышечном волокне «привязана» к соседней посредством белковых соединений, которые называются промежуточными филаментами. Все периферические миофибриллы имеют связь с оболочкой мышечного волокна (сарколеммой) посредством белковых структур, которые называются костамерами.

Рис. 3. Связь периферических миофибрилл  с оболочкой мышечного волокна (сарколеммой) посредством белковых структур, которые называются костамерами.

 


Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц«


Влияние силовой тренировки на объем и количество миофибрилл

Доказано, что под влиянием силовой тренировки в мышечном волокне увеличивается количество миофибрилл и их объем. Это явление называется миофибриллярной гипертрофией.

Увеличение количества миофибрилл называется гиперплазией миофибрилл. Увеличение объема миофибрилл называется гипертрофией миофибрилл.

У взрослых объем миофибрилл возрастает за счет изменения площади поперечного сечения миофибриллы (она становится толще). Ученый Голдспинк еще в 1970 году доказал, что при достижении миофибриллы больших размеров, она расщепляется на две миофибриллы.

Гипертрофия миофибрилл у детей

У детей происходит увеличение длины мышц, соответственно «растут» в длину и миофибриллы. Это происходит за счет добавления саркомеров на концах миофибрилл. Таким образом увеличивается объем миофибрилл, то есть происходит их гипертрофия.

Неиспользование

Если конечность травмирована, например, наложен гипс, и фиксирована длина мышцы, через несколько часов длина мышцы начинает уменьшаться. Длина миофибрилл также уменьшается. Это происходит за счет разрушения саркомеров, расположенных на краях миофибрилл. Кроме того, происходит уменьшение толщины миофибрилл и их количества.

 

С уважением, А.В. Самсонова

 

Механизм мышечных сокращений кратко :: SYL.ru

Процессы мышечной работы представляют собой многоуровневый комплекс физиологических и биохимических функций, жизненно важных для полноценной работы человеческого организма. Внешне подобные процессы можно наблюдать на примерах произвольных движений при ходьбе, беге, изменении мимики и т. д. Однако они охватывают гораздо больший спектр функций, в числе которых также значится работа дыхательного аппарата, органов пищеварения и выделительной системы. В каждом случае механизм мышечных сокращений подкрепляется работой миллионов клеток, в которой задействуются химические элементы и физические волокна.

Структурная организация мышцы

Мышцы формируются множеством волокон ткани, которые имеют узлы крепления к костям скелета. Они располагаются параллельно и в процессе мышечной работы взаимодействуют между собой. Именно волокна при поступлении импульсов обеспечивают механизм мышечного сокращения. Кратко структуру мышцы можно представить как систему, состоящую из молекул саркомер и миофибрилла. Важно понимать, что каждое мышечное волокно образуется множеством субъединиц миофибрилл, располагающихся продольно по отношению друг к другу. Теперь стоит отдельно рассмотреть саркомеры и филаменты. Поскольку они играют важную роль в двигательных процессах.

Саркомеры и филаменты

Саркомеры представляют собой сегменты волокон, которые отделяются так называемыми Z-пластинами, содержащими бета-актинин. От каждой пластины отходят актиновые филаменты, а промежутки заполняются толстыми миозиновыми аналогами. Актиновые элементы, в свою очередь, похожи на ниточки бус, закрученных в двойную спираль. В этой структуре каждая бусинка является молекулой актина, а в участках с углублениями в спирали находятся молекулы тропонина. Каждая из этих структурных единиц формирует механизм сокращения и расслабления мышечного волокна, связываясь друг с другом. Ключевую роль в возбуждении волокон играет клеточная мембрана. В ней заключены поперечные трубочки-инвагинации, которые активизируют функцию саркоплазматического ретикулума – это и будет возбуждающий эффект для мышечной ткани.

Двигательная единица

Теперь стоит отойти от углубленной структуры мышцы и рассмотреть двигательную единицу в общей конфигурации скелетной мышцы. Это будет совокупность мышечных волокон, иннервируемых отростками мотонейрона. Работа ткани мышцы независимо от характера действия будет обеспечиваться волокнами, включенными в состав одной двигательной единицы. То есть при возбуждении мотонейрона срабатывает механизм мышечных сокращений в рамках одного комплекса с иннервируемыми отростками. Такое разделение на мотонейроны позволяет целенаправленно задействовать конкретные мышцы, не возбуждая без надобности соседние двигательные единицы. По сути, вся мышечная группа одного организма делится на сегменты мотонейронов, которые могут объединяться в работе над сокращением или расслаблением, а могут действовать разнопланово или поочередно. Главное, что они независимы друг от друга и работают только с сигналами своей группы волокон.

Молекулярные механизмы мышечной работы

В соответствии с молекулярной концепцией о скольжении нитей, работа мышечной группы и, в частности, ее сокращение реализуется в ходе скользящего действия миозинов и актинов. Реализуется сложный механизм взаимодействия этих нитей, в котором можно выделить несколько процессов:

  • Центральная часть миозиновой нити соединяются со связками актинов.
  • Достигнутый контакт актина с миозином способствует конформационному перемещению молекул последнего. Головки вступают в фазу активности и разворачиваются. Таким образом осуществляются молекулярные механизмы мышечного сокращения на фоне перестройки нитей активных элементов по отношению друг к другу.
  • Затем происходит взаимное расхождение миозинов и актинов с последующим восстановлением головной части последних.

Весь цикл выполняется несколько раз, в результате чего происходит смещение вышеупомянутых нитей, а Z-сегменты саркомеров сближаются и укорачиваются.

Физиологические свойства работы мышц

Среди основных физиологических свойств мышечной работы выделяют сократимость и возбудимость. Эти качества, в свою очередь, обуславливаются проводимостью волокон, пластичностью и свойством автоматии. Что касается проводимости, то она обеспечивает распространение процесса возбудимости между миоцитами по нексусам – это специальные электропроводящие контуры, отвечающие за проведение импульса сокращения мышцы. Однако после сокращения или расслабления тоже совершается работа волокон.

За их спокойное состояние в определенной форме отвечает пластичность, определяющая сохранение постоянного тонуса, в котором на текущий момент находится механизм мышечного сокращения. Физиология пластичности может проявляться как в виде сохранения укороченного состояния волокон, так и в их растянутом виде. Интересно и свойство автоматии. Она определяет способность мышц входить в рабочую фазу без подключения нервной системы. То есть миоциты самостоятельно вырабатывают ритмически повторяющиеся импульсы для тех или иных действий волокон.

Биохимические механизмы мышечной работы

В работе мышц участвует целая группа химических элементов, среди которых кальций и сократительные белки наподобие тропонина и тропомиозина. На базе этого энергетического обеспечения и выполняются рассмотренные выше физиологические процессы. Источником же этих элементов выступает аденозинтрифосфорная кислота (АТФ), а также ее гидролиз. При этом запас АТФ в мышце способен обеспечивать сокращение мышцы лишь в течение доли секунды. Несмотря на это, волокна могут отвечать на нервные импульсы в постоянном режиме.

Дело в том, что биохимические механизмы мышечного сокращения и расслабления с поддержкой АТФ связаны с процессом выработки резервного запаса макроэрга в виде креатинфосфата. Объем этого резерва в несколько раз превышает запас АТФ и в то же время способствует его генерации. Также помимо АТФ энергетическим источником для мышцы может выступать гликоген. К слову, на мышечные волокна приходится около 75% всего запаса данного вещества в организме.

Сопряжение возбудительных и сократительных процессов

В спокойном состоянии нити волокон не взаимодействуют друг с другом посредством скольжения, так как центры связок закрываются молекулами тропомиозина. Возбуждение может иметь место только после электромеханического сопряжения. Данный процесс также делится на несколько этапов:

  • При активации нейромышечного синапса на мембране миофибриллы формируется так называемый постсинаптический потенциал, накапливающий энергию для действия.
  • Возбуждающий импульс благодаря системе трубок расходится по мембране и активизирует ретикулум. Этот процесс в итоге способствует снятию барьеров с каналов мембраны, по которым выпускаются ионы, связывающиеся с тропонином.
  • Белок тропонин, в свою очередь, открывает центры связок актина, после чего становится возможным механизм мышечных сокращений, но для его начала также потребуется соответствующий импульс.
  • Использование открывшихся центров начнется в момент, когда к ним присоединятся головки миозина по описанной выше модели.

Полный цикл этих операций происходит в среднем за 15 мс. Период от начальной точки возбуждения волокон до полного сокращения называется латентным.

Процесс расслабления скелетной мышцы

При расслаблении мышц происходит обратный перенос ионов Са++ с подключением ретикулума и кальциевых каналов. В процессе выхода ионов из цитоплазмы количество центров связки сокращается, в результате чего происходит разъединение актиновых и миозиновых филаментов. Иными словами, механизмы мышечного сокращения и расслабления подключают те же функциональные элементы, но оперируют ими разными способами. После расслабления может наступать процесс контрактуры, при котором отмечается устойчивое сокращение мышечных волокон. Это состояние может сохраняться до момента, пока не наступит очередное действие раздражающего импульса. Бывает и контрактура краткого действия, предпосылками для которой становится тетаническое сокращение в условиях скопления ионов с большими объемами.

Фазы сокращения

Когда мускулатура приводится в действие раздражающим импульсом сверхпороговой силы, происходит одиночное сокращение, в котором можно выделить 3 фазы:

  • Уже упомянутый выше период сокращения латентного типа, в процессе которого волокна накапливают энергию для совершения последующих действий. В это время проходят процессы электромеханического сопряжения и открываются центры связок. На данной стадии подготавливается механизм сокращения мышечного волокна, который активизируется после распространения соответствующего импульса.
  • Фаза укорочения – длится 50 мс в среднем.
  • Фаза расслабления – также длится примерно 50 мс.

Режимы мышечного сокращения

Работа при одиночном сокращении была рассмотрена как пример «чистой» механики мышечных волокон. Однако в естественных условиях такая работа не совершается, поскольку волокна находятся в постоянном отклике на сигналы двигательных нервов. Другое дело, что в зависимости от характера этого отклика может происходить работа в следующих режимах:

  • Сокращения возникают при пониженной частоте импульсов. Если электрический импульс распространяется после завершения расслабления, то следует серия одиночных актов сокращения.
  • Высокая частота импульсных сигналов может совпадать с расслабляющей фазой предшествующего цикла. В этом случае амплитуда, в которой работал механизм сокращения мышечной ткани, будет суммироваться, что обеспечит длительное сокращение с неполными актами расслабления.
  • В условиях повышения частоты импульсов новые сигналы будут действовать в периоды укорочения, что спровоцирует длительное сокращение, которое не будет прерываться расслаблениями.

Оптимум и пессимум частоты

Амплитуды сокращений определяются частотой импульсов, которые раздражают мышечные волокна. В этой системе взаимодействия сигналов и откликов можно выделить оптимум и пессимум частоты. Первым обозначается частота, которая в момент действия будет накладываться на фазу повышенной возбудимости. В таком режиме может активизироваться механизм сокращения мышечного волокна с большой амплитудой. В свою очередь, пессимум определяет более высокую частоту, импульс которой приходится на фазу рефрактерности. Соответственно, в этом случае амплитуда уменьшается.

Виды работы скелетной мышцы

Мышечные волокна могут осуществлять работу динамически, статически и динамически-уступающе. Стандартная динамическая работа является преодолевающей – то есть мышца в момент сокращения перемещает объекты или его составные части в пространстве. Статическое действие мышцы в некотором роде избавлено от нагрузок, поскольку в этом случае не предусматривается изменение его состояния. Динамически-уступающий механизм мышечного сокращения скелетной мышцы срабатывает, когда волокна функционируют в условиях растяжения. Потребность в параллельном растяжении также может быть обусловлена тем, что работа волокон предполагает выполнение операций со сторонними телами.

В заключение

Процессы организации мышечного действия подключают самые разные функциональные элементы и системы. В работе задействуется сложный комплекс участников, каждый из которых выполняет свою задачу. Можно видеть, как в процессе активации механизма мышечных сокращений срабатывают и косвенные функциональные блоки. Например, это касается процессов генерации энергетического потенциала для совершения работы или системы блокировки центров связок, через которые происходит соединение миозинов и актинов.

Основная же нагрузка приходится непосредственно на волокна, которые выполняют те или иные действия по командам двигательных единиц. Причем характер выполнения определенной работы может быть разным. На него будут влиять параметры направляемого импульса, а также текущее состояние мышцы.

мышц | Системы, типы, ткани и факты

Мышца , сократительная ткань животных, функция которой заключается в движении.

поперечнополосатая мышца; двуглавая мышца человека

Строение поперечно-полосатой или скелетной мышцы. Поперечно-полосатая мышечная ткань, такая как ткань двуглавой мышцы человека, состоит из длинных тонких волокон, каждое из которых, по сути, представляет собой пучок более тонких миофибрилл. Внутри каждой миофибриллы находятся филаменты белков миозина и актина; эти нити скользят друг мимо друга, когда мышца сокращается и расширяется.На каждой миофибрилле можно увидеть регулярно встречающиеся темные полосы, называемые Z-линиями, в местах наложения актиновых и миозиновых филаментов. Область между двумя линиями Z называется саркомером; саркомеры можно рассматривать как первичную структурную и функциональную единицу мышечной ткани.

Encyclopædia Britannica, Inc.

Британская викторина

Человеческое тело: факт или вымысел?

Могут ли люди выбирать левши или правши? От нервов и генов до мышц и органов - посмотрите, насколько вы владеете обеими руками, выбирая между правильным - и неправильным - в этой викторине.

Движение, сложное взаимодействие мышечных и нервных волокон, является средством, с помощью которого организм взаимодействует с окружающей средой. Иннервация мышечных клеток или волокон позволяет животному вести нормальную жизнедеятельность. Организм должен двигаться в поисках пищи или, если он ведет малоподвижный образ жизни, должен иметь средства, чтобы приносить пищу самому себе. Животное должно уметь перемещать питательные вещества и жидкости по своему телу, и оно должно быть в состоянии реагировать на внешние или внутренние раздражители.Мышечные клетки подпитывают свои действия, преобразовывая химическую энергию в форме аденозинтрифосфата (АТФ), которая образуется в результате метаболизма пищи, в механическую энергию.

Мышца - это сократительная ткань, сгруппированная в скоординированные системы для большей эффективности. У людей мышечные системы классифицируются по внешнему виду и расположению клеток. Три типа мышц: поперечно-полосатая (или скелетная), сердечная и гладкая (или гладкая). Поперечно-полосатая мышца почти полностью прикреплена к скелету и составляет основную часть мышечной ткани тела.Многоядерные волокна находятся под контролем соматической нервной системы и вызывают движение за счет сил, действующих на скелет, подобно рычагам и шкивам. Ритмичное сокращение сердечной мышцы регулируется синоатриальным узлом, кардиостимулятором сердца. Хотя сердечная мышца - это специализированная поперечно-полосатая мышца, состоящая из удлиненных клеток с множеством центрально расположенных ядер, она не находится под произвольным контролем. Гладкие мышцы выстилают внутренние органы, кровеносные сосуды и дерму, и, как и сердечная мышца, их движения управляются вегетативной нервной системой и, следовательно, не находятся под произвольным контролем.Ядро каждой коротко сужающейся клетки расположено по центру.

Одноклеточные организмы, простые животные и подвижные клетки сложных животных не имеют обширных мышечных систем. Скорее, движение в этих организмах вызывается волосковидными расширениями клеточной мембраны, называемыми ресничками и жгутиками, или цитоплазматическими расширениями, называемыми псевдоподиями.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Эта статья представляет собой сравнительное исследование мышечных систем различных животных, включая объяснение процесса сокращения мышц.Для описания мышечной системы человека, связанной с вертикальной позой, см. мышечная система человека.

Общие характеристики мышц и движения

Узнайте, как моторная кора и гипоталамус контролируют произвольные и непроизвольные движения мышц

Произвольные мышцы контролируются моторной корой, а непроизвольные мышцы контролируются другими областями мозга, такими как гипоталамус.

Создано и произведено QA International.© QA International, 2010. Все права защищены. www.qa-international.com См. все видеоролики к этой статье

Мышцы обеспечивают движения многоклеточных животных и поддерживают осанку. По внешнему виду он напоминает мясо или плоть рыбы. Мышцы - самая многочисленная ткань у многих животных; например, он составляет от 50 до 60 процентов массы тела у многих рыб и от 40 до 50 процентов у антилоп. Некоторые мышцы находятся под сознательным контролем и называются произвольными мышцами. Другие мышцы, называемые непроизвольными мышцами, сознательно не контролируются организмом.Например, у позвоночных мышцы стенок сердца ритмично сокращаются, перекачивая кровь по телу; мышцы стенок кишечника перемещают пищу за счет перистальтики; мышцы стенок мелких кровеносных сосудов сжимаются или расслабляются, контролируя приток крови к разным частям тела. (Эффекты мышечных изменений кровеносных сосудов проявляются в покраснении и побледнении из-за увеличения или уменьшения кровотока, соответственно, к коже.)

Мышцы - не единственное средство передвижения у животных.Многие протисты (одноклеточные организмы) передвигаются вместо этого, используя реснички или жгутики (активно преодолевая процессы на поверхности клетки, которые продвигают организм через воду). Некоторые одноклеточные организмы способны к амебоидному движению, при котором содержимое клетки перетекает из тела клетки в расширения, называемые псевдоподиями. Некоторые простейшие с ресничками передвигаются с помощью стержней, называемых мионемами, которые способны быстро сокращаться.

Немышечные способы передвижения важны и для многоклеточных животных.Многие микроскопические животные плавают за счет биения ресничек. Некоторые мелкие моллюски и плоские черви ползают, используя реснички на нижней стороне тела. Некоторые беспозвоночные, которые питаются путем фильтрации частиц из воды, используют реснички для создания необходимых водных потоков. У высших животных лейкоциты используют амебоидные движения, а реснички клеток, выстилающих дыхательные пути, удаляют инородные частицы с нежных мембран.

Мышцы состоят из длинных тонких клеток (волокон), каждая из которых представляет собой пучок более тонких волокон (рисунок 1).Внутри каждой фибриллы находятся относительно толстые нити белкового миозина и тонкие нити актина и других белков. Когда мышечное волокно удлиняется или укорачивается, волокна остаются практически постоянной по длине, но скользят друг мимо друга, как показано на рисунке 2. Напряжение в активных мышцах создается поперечными мостиками (т. Е. Выступами толстых волокон, которые прикрепляются к тонким и приложить к ним силы). По мере того, как активная мышца удлиняется или укорачивается, а волокна скользят друг мимо друга, поперечные мосты постоянно отсоединяются и снова прикрепляются в новых положениях.Их действие похоже на натягивание веревки из рук в руки. Некоторые мышечные волокна имеют длину несколько сантиметров, но большинство других клеток имеют длину лишь доли миллиметра. Поскольку эти длинные волокна не могут адекватно обслуживаться одним ядром, по их длине расположены многочисленные ядра.

миофиламентов в поперечно-полосатой мышце

Рисунок 2: Расположение миофиламентов в поперечно-полосатой мышце. На верхней диаграмме мышца растянута, а на нижней - сокращена.Толстые нити имеют длину 1,6 мкм (0,0016 мм) в поперечнополосатых мышцах позвоночных, но до шести мкм в длину у некоторых членистоногих.

Encyclopædia Britannica, Inc.

Работа, выполняемая мышцами, требует химической энергии, полученной в результате метаболизма пищи. Когда мышцы сокращаются при приложении напряжения и выполнении механической работы, часть химической энергии преобразуется в работу, а часть теряется в виде тепла. Когда мышцы удлиняются при напряжении (например, при медленном опускании веса), используемая химическая энергия, наряду с механической энергией, поглощаемой при действии, преобразуется в тепло.Выработка тепла - важная функция мышц у теплокровных животных. Дрожь - это мышечная активность, которая генерирует тепло и согревает тело. Точно так же некоторые насекомые перед полетом некоторое время колеблют свои крылья, нагревая мышцы до температуры, при которой они работают лучше всего.

.

Механизм сокращения мышц

Цели:

(1) Для оценки нервной реакции, необходимой для высвобождения кальция для сокращения мышц.

(2) Обсудить роль кальция в «включении» мышц.

(3) Чтобы показать шаги, необходимые для расслабления мышц.

Материалы для чтения: Принципы мясной науки (5-е издание), глава 3, страницы 61–74.


Ниже приведены два разных, но похожих описания сокращения мышц, которые объясняют процессы, участвующие в уведомлении, сокращении и расслаблении.

В сокращении мышц участвуют следующие этапы:

(1) Последовательность событий, ведущих к сокращению, инициируется где-то в центральной нервной системе, либо как произвольная активность головного мозга, либо как рефлекторная активность спинного мозга.

(2) Моторный нейрон в вентральном роге спинного мозга активируется, и потенциал действия проходит наружу в вентральном корешке спинного мозга.

(3) Аксон разветвляется для снабжения ряда мышечных волокон, называемых двигательной единицей, и потенциал действия передается на концевую пластину двигателя на каждом мышечном волокне.

(4) На концевой пластине мотора потенциал действия вызывает выброс пакетов или квантов ацетилхолина в синаптических щелях на поверхности мышечного волокна.

(5) Ацетилхолин вызывает изменение электрического потенциала покоя под концевой пластиной двигателя, и это затем инициирует потенциал действия, который проходит в обоих направлениях вдоль поверхности мышечного волокна.

(6) При открытии каждого поперечного канальца на поверхность мышечного волокна потенциал действия распространяется внутри мышечного волокна.

(7) В каждой точке, где поперечный каналец касается части саркоплазматического ретикулума, он заставляет саркоплазматический ретикулум выделять ионы Ca ++ .

(8) Ионы кальция приводят к перемещению тропонина и тропомиозина на их тонких филаментах, и это позволяет головкам молекул миозина «захватывать и поворачивать» свой путь вдоль тонкой нити. Это движущая сила сокращения мышц.

Сокращение выключается следующей последовательностью событий:

(9) Ацетилхолин в нервно-мышечном соединении расщепляется ацетилхолинэстеразой, и это прекращает поток потенциалов действия вдоль поверхности мышечных волокон.

(10) Саркоплазматический ретикулум перестает выделять ионы кальция и немедленно начинает реэквестировать все высвободившиеся ионы кальция.

(11) В отсутствие ионов кальция изменение конфигурации тропонина и тропомиозина затем блокирует действие головок молекул миозина, и сокращение прекращается.

(12) У живого животного внешняя растягивающая сила, такая как сила тяжести или антагонистическая мышца, оттягивает мышцу до ее первоначальной длины.

Блок-схема сокращения мышц (рисунок 3.8)

Фаза сокращения

Состояние покоя

Потенциал действия двигательного нерва достигает концевой пластины двигателя

Высвобождение ацетилхолина, деполяризация сарколеммы и мембран (поток Na + в волокно)

Потенциал действия передается через Т-канальцы на SR

Ca ++ высвобождается из терминальных цистерн SR в саркоплазму

Ca ++ связанный тропонином

Миозин-АТФаза активированная и АТФ гидролизованная

Сдвиг тропомиозина от сайта связывания актина

Актин-миозиновый перекрестный мостик

Неоднократное образование и разрыв поперечных мостиков, приводящее к скольжению волокон и укорочению саркомера

Фаза релаксации
Высвобождение холинэстеразы и распад ацетилхолина

Реполяризация сарколеммы и Т-канальцев

SR Ca ++ насос активирован и Ca ++ вернулся в терминальные цистерны SR

Прекращение образования актин-миозинового перекрестного мостика

Возвращение тропомиозина к сайту связывания актина

Mg ++ комплекс, образованный с АТФ

Пассивное скольжение нитей

Саркомеры возвращаются в состояние покоя


Обзор материала - что студент должен знать:

(1) Нервные события, происходящие в сокращении.

(2) Роль кальция в «включении» мышц.

(3) Факторы, связанные с фактическим процессом сокращения.

(4) События, которые вызывают релаксацию.


Ссылки на связанные сайты

Сокращение и расслабление говяжьих мышц. Исследование качества говядины от имени The Beef Checkoff, Национальная ассоциация животноводов по говядине. Подготовлено Центром безопасности и качества мяса, Департамент зоотехники, Государственный университет Колорадо.

Трупное окоченение. Исследование качества говядины от имени The Beef Checkoff, Национальная ассоциация животноводов по говядине. Подготовлено Центром безопасности и качества мяса, Департамент зоотехники, Государственный университет Колорадо.

.

Сокращение мышц | BioNinja

Понимание:

• Ионы кальция и белки тропомиозин и тропонин контролируют мышечные сокращения


Процесс мышечного сокращения происходит на нескольких ключевых этапах, в том числе:

  • Деполяризация и высвобождение ионов кальция
  • Образование поперечных мостиков из актина и миозина
  • Механизм скольжения актиновых и миозиновых нитей
  • Укорочение саркомера (сокращение мышц )

1. Деполяризация и высвобождение ионов кальция

  • Потенциал действия моторного нейрона запускает высвобождение ацетилхолина в концевой пластинке мотора
  • Ацетилхолин инициирует деполяризацию в сарколемме, которая распространяется по мышечным волокнам через Т-канальцы
  • Деполяризация заставляет саркоплазматический ретикулум высвобождать запасы ионов кальция (Ca 2+ )
  • Ионы кальция играют ключевую роль в инициировании мышечных сокращений

Мышечная иннервация

2. Актин и образование миозинового поперечного мостика

  • На актине участки связывания миозиновых головок покрыты блокирующим комплексом (тропонин и тропомиозин)
  • Ионы кальция связываются с тропонином и изменяют конфигурацию комплекса, открывая связывание участки для миозиновых головок
  • Затем миозиновые головки образуют поперечный мостик с актиновыми филаментами

Роль кальция в формировании поперечного моста

Понимание:

• Сокращение скелетных мышц достигается за счет скольжения актиновых и миозиновых нитей

• Для скольжения нитей необходимы гидролиз АТФ и образование поперечных мостиков.


3. Скользящий механизм актина и миозина

  • АТФ связывается с головкой миозина, разрывая мостик между актином и миозином
  • Гидролиз АТФ заставляет головки миозина изменять положение и поворачиваться, перемещая их к следующему месту связывания актина
  • Головки миозина связываются с новыми участками актина и возвращаются к своей исходной конформации
  • Эта переориентация тянет актин вдоль миозина в скользящем механизме
  • Головки миозина перемещают актиновые филаменты аналогично тому, как весло приводит в движение гребную лодку

Механизм скольжения

4. Укорочение саркомера

  • Повторяющаяся переориентация головок миозина тянет актиновые филаменты по длине миозина
  • Поскольку актиновые филаменты прикрепляются к Z-линиям, перетаскивание актина сближает Z-линии, укорачивая саркомер
  • По мере того, как отдельные саркомеры становятся короче, мышечные волокна сокращаются в целом

Диаграммы укорочения саркомера

Сводка мышечных сокращений

  • Потенциал действия в двигательном нейроне запускает высвобождение ионов Ca 2+ из саркоплазматического ретикулума
  • Ионы кальция связываются с тропонином (на актине) и заставляют тропомиозин двигаться, обнажая сайты связывания для миозиновых головок
  • Актиновые филаменты и миозиновые головки образуют поперечный мостик, который разрушается АТФ
  • Гидролиз АТФ заставляет миозиновые головки поворачиваться и менять ориентацию
  • Поворотные миозиновые головки связываются с актиновым филаментом, прежде чем вернуться к их исходная конформация (высвобождение ADP + Pi)
  • Перемещение головок миозина перемещает актиновые филаменты к центру саркомера
  • Таким образом, скольжение актина вдоль миозина укорачивает саркомер, вызывая сокращение мышц

Сокращение мышц Резюме


Обратите внимание:
В этой анимации головка миозина прикреплена к актину, когда гидролиз АТФ заставляет ее поворачиваться
В действительности головка миозина поворачивается, когда она не прикреплена, а затем возвращается в исходное состояние после связывания актина

.

Сокращение мышц -

Muscle contration - Wikiwand

Для более быстрой навигации этот iframe предварительно загружает страницу Wikiwand для Сокращение мышц .

Подключено к:
{{:: readMoreArticle.title}}

Из Википедии, свободной энциклопедии

{{bottomLinkPreText}} {{bottomLinkText}} Эта страница основана на статье в Википедии, написанной участники (читать / редактировать).
Текст доступен под Лицензия CC BY-SA 4.0; могут применяться дополнительные условия.
Изображения, видео и аудио доступны по соответствующим лицензиям.
{{current.index + 1}} из {{items.length}}

Спасибо за жалобу на это видео!

Пожалуйста, помогите нам решить эту ошибку, написав нам по адресу support @ wikiwand.com
Сообщите нам, что вы сделали, что вызвало эту ошибку, какой браузер вы используете и установлены ли у вас какие-либо специальные расширения / надстройки.
Спасибо! .

Смотрите также

3