Поперечно полосатая сердечная мышца


Что нужно знать о мышечной ткани сердца

Автор Руслан Хусаинов На чтение 5 мин. Опубликовано Обновлено

Мышечная ткань сердца, или миокард, является типом мышечной ткани, которая формирует сердце. Эта мышечная ткань сокращается непроизвольно, и отвечает за то, чтобы сердце качало кровь по всему телу.

Что такое мышечная ткань сердца?

Мышца — это волокнистая ткань, которая сокращаясь вызывает движение. В организме три типа мышечной ткани: скелетная, гладкая и сердечная. Сердечная мышца высокоорганизована и содержит много типов клеток, включая фибробласты, клетки гладких мышц и кардиомиоциты. Эти клетки выполняют высоко скоординированные действия, поддерживающие работу сердца и циркуляцию крови по всему телу.

В отличие от скелетных мышц, которые присутствуют в руках и ногах, сокращение ткани сердечной мышцы является непроизвольным. Это означает, что это происходит автоматически, и человек не может их контролировать.

Как работает мышечная ткань сердца?

Сердце содержит специализированные типы сердечной ткани, содержащие клетки «кардиостимулятора». Они сокращаются и расширяются в ответ на электрические импульсы от нервной системы. Клетки кардиостимулятора генерируют электрические импульсы или потенциалы действия, которые заставляют клетки сердечной мышцы сокращаться и расслабляться. Клетки кардиостимулятора контролируют частоту сердечных сокращений и определяют, как быстро сердце качает кровь.

Ткань сердечной мышцы приобретает силу благодаря взаимосвязанным клеткам сердечной мышцы или волокнам. Большинство клеток сердечной мышцы содержат одно ядро, но некоторые имеют два. В ядре находится весь генетический материал клетки. Клетки сердечной мышцы также содержат митохондрии, которые называют «электростанциями клеток». Эти органеллы преобразуют кислород и глюкозу в энергию в форме аденозинтрифосфата (АТФ).

Клетки сердечной мышцы под микроскопом выглядят полосатыми. Эти полосы возникают вследствие чередующихся нитей, которые содержат белки миозина и актина. Темные полосы указывают на толстые нити, которые содержат белки миозина. Тонкие, более легкие нити содержат актин. Когда клетка сердечной мышцы сокращается, миозиновая нить притягивает актиновые нити друг к другу, что приводит к сокращению клетки. Ячейка использует АТФ для питания этого сокращения. Одна нить миозина соединяется с двумя актиновыми нитями с каждой стороны. Это формирует единое целое мышечной ткани, называемое саркомером. Интеркалированные диски соединяют клетки сердечной мышцы. Разрывные соединения внутри интеркалированных дисков передают электрические импульсы от одной клетки сердечной мышцы к другой. Десмосомы — это другие структуры, присутствующие в интеркалированных дисках. Они помогают скреплять волокна сердечной мышцы.

Кардиомиопатия

Существуют заболевания, которые поражают ткани сердечной мышцы и нарушают способность сердца качать кровь или нормально расслабляться. К ним относится кардиомиопатия. Некоторые симптомы кардиомиопатии включают:

  • затрудненное дыхание или одышку;
  • усталость;
  • отек ног, лодыжек и ступней;
  • воспаление в области живота или шеи;
  • аритмию;
  • шумы в сердце;
  • головокружение. 

Факторы, которые могут увеличить риск развития кардиомиопатии:

  • сахарный диабет;
  • заболевание щитовидной железы;
  • ишемическая болезнь сердца;
  • инфаркт;
  • высокое кровяное давление;
  • вирусные инфекции, которые поражают сердечную мышцу;
  • клапанная болезнь сердца;
  • чрезмерное употребление алкоголя;
  • семейная история кардиомиопатии.

Сердечный приступ вследствие закупорки артерии может остановить кровоснабжение в определенных областях сердца. В конце концов, сердечная мышечная ткань в этих областях начнет умирать. Гибель сердечной мышечной ткани может также произойти, когда потребность сердца в кислороде превышает предложение кислорода. Это вызывает выброс сердечных белков, таких как тропонин, в кровоток.

Некоторые разновидности кардиомиопатии

  • Дилатационная кардиомиопатия вызывает растяжение сердечной мышечной ткани левого желудочка и расширение камер сердца.
  • Гипертрофическая кардиомиопатия (ГКМ) — это генетическое состояние, при котором кардиомиоциты расположены не скоординированно, а дезорганизованы. ГКМ может прерывать кровоток из желудочков, вызывать аритмию (аномальные электрические ритмы) или приводить к застойной сердечной недостаточности.
  • Рестриктивная кардиомиопатия возникает, когда стенки желудочков становятся жесткими. Если это происходит, желудочки не могут расслабиться, чтобы наполниться достаточным количеством крови.
  • Аритмогенная дисплазия правого желудочка — эта редкая форма кардиомиопатии вызвана жировой инфильтрацией ткани сердечной мышцы в правом желудочке.
  • Транстиретин амилоидная кардиомиопатия развивается, когда амилоидные белки накапливаются и образуют отложения в стенках левого желудочка. Отложения амилоида вызывают усиление стенок желудочка, что препятствует наполнению желудочка кровью и снижает его способность откачивать кровь из сердца. 

Советы по сохранению здоровой ткани сердечной мышцы

Регулярные занятия аэробикой могут укрепить сердечную мышечную ткань и сохранить здоровье сердца и легких. Аэробная деятельность включает в себя движение больших скелетных мышц, что заставляет человека дышать быстрее и учащать сердцебиение. Выполнение этих видов деятельности позволяет тренировать сердце. Некоторые примеры аэробных упражнений включают в себя:

  • бег трусцой;
  • ходьбу;
  • катание на велосипеде;
  • плавание;
  • прыжки со скакалкой;
  • танцы;
  • поднимание по лестнице.

Врачи дают следующие рекомендации по физической активности:

  1. Дети в возрасте от 6 до 17 лет должны ежедневно выполнять 60 минут физической активности от умеренной до высокой интенсивности.
  2. Взрослым старше 18 лет следует выполнять 150 минут аэробных упражнений средней интенсивности или 75 минут высокой интенсивности каждую неделю.
  3. Беременные женщины должны выполнять аэробные упражнения средней интенсивности не менее 150 минут в неделю.
  4. Взрослые с хроническими заболеваниями или инвалидностью могут заменить аэробные упражнения двумя тренировками в неделю для укрепления мышц.
  5. Регулярные занятия аэробикой могут укрепить ткани сердечной мышцы и снизить риск сердечного приступа, инсульта и других сердечно-сосудистых заболеваний.

Статья по теме: Что такое кардиомиопатия такоцубо?

Мышечные ткани, подготовка к ЕГЭ по биологии

Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости, соединения костей). Важнейшие свойства мышечной ткани: сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечно-полосатая (скелетная) и сердечная мышечные ткани.

Гладкая (висцеральная) мускулатура

Эта мышечная ткань встречается в стенках внутренних органах (кишечник, мочевой пузырь), в стенках сосудов, протоках желез. Эволюционно является наиболее древним видом мускулатуры.

Состоит из веретенообразных миоцитов - коротких одноядерных клеток. Слабо выражено межклеточное вещество, клетки сближены друг с другом: благодаря этому возбуждение, возникшее в одной клетке, волнообразно распространяется на все остальные клетки.

Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы внутренних органов (к примеру мочевого пузыря), практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает и утомляется быстро.

Осуществляется сокращение с помощью клеточных органоидов - миофиламентов, которые расположены в клетке хаотично и не имеют такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их тоже изучим.)

Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой: человек не может управлять ей произвольно. К примеру, невозможно по желанию сузить или расширить зрачок.

Скелетная поперечно-полосатая мускулатура

Скелетная ткань образует мышцы туловища, конечностей и головы.

В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными волокнами, имеющими до 100 и более ядер - миосимпластами. Миосимпласт представляет совокупность слившихся клеток, имеет длину от нескольких миллиметров до нескольких сантиметром.

Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой.

Характерная черта данной ткани - поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы - саркомер.

Саркомер (от греч. sarco - мясо (мышца) + mere - маленький)

Сократимость мышечной ткани обусловлена наличием в клетках миофиламентов. Саркомер - элементарная сократительная единица мышцы. Состоит из тонкого белка - актина, и толстого - миозина. Сокращение осуществляется благодаря трению нитей актина о нити миозина, в результате чего саркомер укорачивается.

Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они связываются с тропонином (белком между нитями актина), что обуславливает соединение актина и миозина. При сокращении мышц выделяется тепло.

Замечу, что трупное окоченение - посмертное затвердевание мышц - связано именно с ионами кальция, которые устремляются в область низкой концентрации (мышцы), способствуя связыванию актина и миозина. Мертвый организм не способен разорвать цикл, возникший в мышцах, в связи с чем наблюдается стойкая мышечная контрактура (лат. contractura - стягивание, сужение): конечности очень сложно разогнуть или согнуть.

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

В процесс возбуждения вовлекается изолированно один миосимпласт, соседние волокна не возбуждают друг друга, в отличие от гладких миоцитов. Скелетные мышцы сокращаются мгновенно (у гладких мышц фазы сокращения и расслабления растянуты во времени) и быстро утомляются.

Скелетные мышцы подконтрольны нашему сознанию: их сокращение регулируется произвольно. К примеру, по желанию мы можем изменить скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение суставы.

Сердечная мышечная ткань

Мышечная ткань сердца - миокард (от др.-греч. μῦς «мышца» + καρδία - «сердце») - средний слой сердца, составляющий основную часть его массы.

Этот тип мышечной ткани удивительным образом сочетает свойства двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое уникальное свойство. Сердечная мышечная ткань состоит из одиночных клеток, имеющих поперечно-полосатую исчерченность.

В некоторых участках эти клетки смыкаются, образуя между собой контакты, благодаря которым возбуждение одной клетки волнообразно передается на соседние, таким образом, охватываются новые участки миокарда. Сокращается эта ткань непроизвольно, не утомляется.

Сердечная ткань обладает уникальным свойством - автоматизмом - способностью возбуждаться и сокращаться без влияний извне, самопроизвольно. Это легко можно подтвердить, изолировав сердце лягушки из организма в физиологический раствор: сокращения сердца в нем будут продолжаться еще несколько часов.

Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных (англ. pacemaker - задающий ритм) клеток, которые также называют водителями ритма. Они спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.

Ответ мышц на физическую нагрузку

Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- чрез, слишком + τροφή - еда, пища) - в них увеличивается количество мышечных волокон, объем мышечной массы нарастает.

В условиях гиподинамии (от греч. ὑπό - под и δύνᾰμις - сила), то есть пониженной активности, мышцы уменьшаются вплоть до полной атрофии. В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.

Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление. Гипертрофия сердца - состояние, требующее вмешательства врача и наблюдения за пациентом.

В большинстве случае гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

Происхождение мышц

Мышцы развиваются из среднего зародышевого листка - мезодермы.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

В чем разница между поперечно-полосатыми и без сердечных мышц - Разница Между

главное отличие между поперечно-полосатой и сердечной мышц является то, что поперечно-полосатые мышцы представляют собой цилиндрические, неразветвленные, многоядерные мышцы с альтернативными светлыми

главное отличие между поперечно-полосатой и сердечной мышц является то, что поперечно-полосатые мышцы представляют собой цилиндрические, неразветвленные, многоядерные мышцы с альтернативными светлыми и темными полосами, в то время как неразветвленные мышцы представляют собой длинные неразветвленные, неядерные мышцы без альтернативных светлых и темных полос, а сердечные мышцы - цилиндрические, разветвленные, неядерные мышцы со слабыми полосами., Кроме того, поперечно-полосатые мышцы являются произвольными мышцами, в то время как неполосатые мышцы и сердечные мышцы являются непроизвольными мышцами.

Поперечно-полосатые, сердечные мышцы - это три типа мышц, которые составляют мышечную ткань животных.

Ключевые области покрыты

1. Что такое поперечно-полосатые мышцы
- определение, структура, функции
2. Что такое не исчерченные мышцы
- определение, структура, функции
3. Что такое сердечные мышцы
- определение, структура, функции
4. Каковы сходства между поперечно-полосатым и без сердечной мышцы
- Краткое описание общих черт
5. В чем разница между поперечно-полосатыми и без сердечных мышц
- Сравнение основных различий

Основные условия

Сердечные мышцы, непроизвольные, не исчерченные мышцы, поперечно-полосатые мышцы, добровольные


Что такое поперечно-полосатые мышцы

Полосатые мышцы - это скелетные мышцы, прикрепленные к костям и сухожилиям. Основная функция поперечно-полосатых мышц заключается в том, чтобы помочь скелетным движениям во время передвижения и движениям частей тела. Кроме того, эти мышцы являются произвольными мышцами, что означает, что их контроль является сознательным. Сокращение и расслабление поперечно-полосатых мышц представляют собой короткие интенсивные всплески. В процентном отношении к массе у взрослого мужчины 42% поперечно-полосатых мышц т

Сердечная поперечно-полосатая мышечная ткань — Студопедия

Отличия от скелетной мышечной ткани

Структурно-функциональной единицей является клетка —кардиомиоцит. По строению и функциям кардиомиоциты подразделяются на две основные группы:


· типичные или сократительные кардиомиоциты, образующие своей совокупностью миокард;

· атипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся в свою очередь на три разновидности.

Сократительный кардиомиоцит представляет собой почти прямоугольную клетку 50—120 мкм в длину, шириной 15—20 мкм, в центре которой локализуется обычно одно ядро. Покрыт снаружи базальной пластинкой. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии. В отличие от скелетной мышечной ткани, миофибриллы кардиомиоцитов представляют собой не отдельные цилиндрические образования, а по существу сеть, состоящую из анастомозирующих миофибрилл, так как некоторые миофиламенты как бы отщепляются от одной миофибриллы и наискось продолжаются в другую. Кроме того, темные и светлые диски соседних миофибрилл не всегда располагаются на одном уровне, и потому поперечная исчерченность в кардиомиоцитах выражена не столь отчетливо, как в скелетных мышечных волокнах. Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующими канальцами. Терминальные цистерны и триады отсутствуют. Т-канальцы имеются, но они короткие, широкие и образованы не только углублением плазмолеммы, но и базальной пластинки. Механизм сокращения в кардиомиоцитах практически не отличается от такового в скелетных мышечных волокнах.


Сократительные кардиомиоциты, соединяясь встык друг с другом, образуют функциональные мышечные волокна, между которыми имеются многочисленные анастомозы. Благодаря этому из отдельных кардиомиоцитов формируется сеть — функциональный синтиций. Наличие щелевидных контактов между кардиомиоцитами обеспечивает одновременное и содружественное их сокращение вначале в предсердиях, а затем и в желудочках.

Области контактов соседних кардиомиоцитов носят название вставочных дисков. Фактически, никаких дополнительных структур (диском между кардиомиоцитами нет. Вставочные диски — это места контактов цитолеммы соседних кардиомиоцитов, включающие в себя простые, десмосомные и щелевидные контакты. Обычно во вставочных дисках различают поперечный и продольный фрагменты. В области поперечных фрагментов имеются расширенные десмосомные соединения. В этих же местах с внутренней стороны плазмолемм прикрепляются актиновые филаменты саркомеров. В области продольных фрагментов локализуются щелевидные контакты. Посредством вставочных дисков обеспечивается как механическая, так и метаболическая (прежде всего ионная) связь кардиомиоцитов.

Сократительные кардиомиоциты предсердий и желудочков несколько отличаются между собой по морфологии и функциям. Так, кардиомиоциты предсердий в саркоплазме содержат меньше миофибрилл и митохондрий, в них почти не выражены Т-канальцы, а вместо них под плазмолеммой выявляются в большом числе везикулы и кавеолы — аналоги Т-канальцев. Кроме того, в саркоплазме предсердных кардиомиоцитов у полюсов ядер локализуются специфические предсердные гранулы, состоящие из гликопротеиновых комплексов. Выделяясь из кардиомиоцитов в кровь предсердий, эти вещества влияют на уровень давления крови в сердце и сосудах, а также препятствуют образованию тромбов в предсердиях. Следовательно, предсердные кардиомиоциты, кроме сократительной, обладают и секреторной функцией. В желудочковых кардиомиоцитах более выражены сократительные элементы, а секреторные гранулы отсутствуют.

Регенерация сердечной мышечной ткани

Кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (в частности, при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубцов (пластическая регенерация). Естественно, что сократительная функция в этих участках отсутствует. Поражение проводящей системы сопровождается нарушением ритма сердечных сокращений.

Сердечная мышца - Cardiac muscle

Мышечная ткань сердца

Сердечная мышца (также называемая сердечной мышцей или миокардом ) - это один из трех типов мышц позвоночных , два других - скелетные и гладкие . Это непроизвольно поперечно-полосатая мышца, которая составляет основную ткань стенок сердца . Миокард образует толстый средний слой между внешним слоем сердечной стенки ( эпикардом ) и внутренним слоем ( эндокардом ), при этом кровь поступает через коронарное кровообращение . Он состоит из отдельных клеток сердечной мышцы ( кардиомиоцитов ), соединенных интеркалированными дисками , окруженных коллагеновыми волокнами и другими веществами, образующими внеклеточный матрикс .

Сердечная мышца сокращается аналогично скелетной мышце , хотя и с некоторыми важными отличиями. Электрическая стимуляция в форме потенциала действия запускает высвобождение кальция из внутреннего хранилища кальция клетки, саркоплазматического ретикулума . Повышение уровня кальция заставляет миофиламенты клеток скользить мимо друг друга в процессе, называемом сцеплением при возбуждении и сокращении .

Большое значение имеют заболевания сердечной мышцы. Они включают в себя условие , вызванное ограниченным кровоснабжением мышцы , включая стенокардию жабу и инфаркт миокард , а также другие заболевания мышц сердца , известные как кардиомиопатию .

Состав

Общая анатомия

3D-рендеринг, показывающий толстый миокард внутри сердечной стенки. Сердечная мышца

Ткань сердечной мышцы или миокард составляет основную часть сердца. Стенка сердца представляет собой трехслойную структуру с толстым слоем миокарда, зажатым между внутренним эндокардом и внешним эпикардом (также известным как висцеральный перикард). Внутренний эндокард выстилает камеры сердца, покрывает сердечные клапаны и соединяется с эндотелием , выстилающим кровеносные сосуды, соединяющиеся с сердцем. На внешней стороне миокарда находится эпикард, который является частью перикарда, мешка, который окружает, защищает и смазывает сердце. В миокарде есть несколько слоев клеток сердечной мышцы или кардиомиоцитов. Мышечные листы, которые окружают левый желудочек, ближайший к эндокарду, ориентированы перпендикулярно ближайшим к эпикарду. Когда эти листы сокращаются скоординированно, они позволяют желудочку сжиматься одновременно в нескольких направлениях - продольно (становится короче от вершины к основанию), радиально (становится уже из стороны в сторону) и скручивающими движениями (аналогично отжиму влажная ткань), чтобы выдавливать из сердца максимально возможное количество крови при каждом ударе.

Сокращение сердечной мышцы требует много энергии и, следовательно, требует постоянного притока крови для обеспечения кислородом и питательными веществами. Кровь поступает в миокард по коронарным артериям . Они берут начало от корня аорты и лежат на внешней или эпикардиальной поверхности сердца. Затем кровь отводится по коронарным венам в правое предсердие .

Гистология

Под микроскопом сердечную мышцу можно сравнить со стеной дома. Большая часть стены занята кирпичиками, которые в сердечной мышце представляют собой отдельные клетки сердечной мышцы или кардиомиоциты. Строительный раствор, окружающий кирпичи, известен как внеклеточный матрикс , образованный поддерживающими клетками, известными как фибробласты . Подобно тому, как стены дома содержат электрические провода и водопровод, сердечная мышца также содержит специализированные клетки для быстрой передачи электрических сигналов ( сердечная проводящая система ) и кровеносные сосуды для доставки питательных веществ к мышечным клеткам и удаления отходов жизнедеятельности ( коронарных артерий , вен и капиллярная сеть).

Клетки сердечной мышцы

Клетки сердечной мышцы или кардиомиоциты - это сокращающиеся клетки, которые позволяют сердцу перекачивать кровь. Каждый кардиомиоцит должен сокращаться в координации со своими соседними клетками, известными как функциональный синцитий, которые эффективно перекачивают кровь из сердца, и если эта координация нарушается, тогда, несмотря на сокращение отдельных клеток, сердце может вообще не перекачивать кровь, например может возникнуть при нарушении сердечного ритма, например, при фибрилляции желудочков .

Под микроскопом клетки сердечной мышцы имеют примерно прямоугольную форму размером 100–150 мкм на 30–40 мкм. Отдельные клетки сердечной мышцы соединены на концах вставными дисками, образуя длинные волокна. Каждая клетка содержит миофибриллы , специализированные белковые волокна, которые скользят друг мимо друга. Они организованы в саркомеры , основные сократительные единицы мышечных клеток. Регулярная организация миофибрилл в саркомеры придает клеткам сердечной мышцы полосатый или полосатый вид при просмотре под микроскопом, похожий на скелетные мышцы. Эти полосы вызваны более светлыми полосами I, состоящими в основном из белка, называемого актином, и более темными полосами A, состоящими в основном из миозина.

Кардиомиоциты содержат Т-канальцы , мембранные мешочки, которые проходят от поверхности к внутренней части клетки, что помогает повысить эффективность сокращения. Большинство этих клеток содержат только одно ядро (хотя их может быть целых четыре), в отличие от клеток скелетных мышц, которые обычно содержат много ядер. Клетки сердечной мышцы содержат множество митохондрий, которые обеспечивают клетку необходимой энергией в форме аденозинтрифосфата (АТФ), что делает их очень устойчивыми к утомлению.

Т-канальцы

Т-канальцы - это микроскопические трубки, которые проходят от поверхности клетки вглубь клетки. Они непрерывны с клеточной мембраной, состоят из одного и того же бислоя фосфолипидов и открыты на поверхности клетки для внеклеточной жидкости , окружающей клетку. Т-канальцы в сердечной мышце больше и шире, чем в скелетных мышцах , но их меньше. В центре клетки они соединяются вместе, переходя внутрь клетки и вдоль нее в виде поперечно-осевой сети. Внутри клетки они лежат рядом с внутренним хранилищем кальция клетки, саркоплазматическим ретикулумом . Здесь один каналец соединяется с частью саркоплазматической сети, называемой терминальной цистерной, в комбинации, известной как диада .

Функции Т-канальцев включают быструю передачу электрических импульсов, известных как потенциалы действия, от поверхности клетки к ядру клетки, а также помощь в регулировании концентрации кальция внутри клетки в процессе, известном как сцепление возбуждения и сокращения .

Вставные диски
Интеркалированные диски являются частью сарколеммы сердечной мышцы и содержат щелевые соединения и десмосомы.

Сердечный синцитий - это сеть кардиомиоцитов, соединенных вставочными дисками, которые обеспечивают быструю передачу электрических импульсов через сеть, позволяя синцитию действовать в координированном сокращении миокарда. Существует предсердия синцития и желудочки синцитий , которые соединены с помощью соединительных сердечных волокон. Электрическое сопротивление через вставленные диски очень низкое, что обеспечивает свободную диффузию ионов. Легкость движения ионов по осям волокон сердечной мышцы такова, что потенциалы действия могут перемещаться от одной клетки сердечной мышцы к другой, встречая лишь небольшое сопротивление. Каждый синцитий подчиняется закону « все или ничего» .

Интеркалированные диски представляют собой сложные прилипающие структуры, которые соединяют отдельные кардиомиоциты с электрохимическим синцитием (в отличие от скелетной мышцы, которая становится многоклеточным синцитием во время эмбрионального развития млекопитающих). Диски отвечают в основном за передачу силы при сокращении мышц. Интеркалированные диски состоят из трех различных типов межклеточных соединений: актиновые филаменты, закрепляющие слипчивые соединения , промежуточные филаменты, закрепляющие десмосомы , и щелевые соединения . Они позволяют потенциалам действия распространяться между клетками сердца, разрешая прохождение ионов между клетками, вызывая деполяризацию сердечной мышцы. Однако новые молекулярно-биологические и всесторонние исследования недвусмысленно показали, что вставочные диски преимущественно состоят из адгезивных соединений смешанного типа, названных area composita (pl. Area Compositae ), представляющих собой слияние типичных десмосомальных белков и белков фасции adhaerens (в отличие от различных эпителиев). Авторы обсуждают высокую важность этих результатов для понимания наследственных кардиомиопатий (таких как аритмогенная кардиомиопатия правого желудочка ).

Под световой микроскопией интеркалированные диски выглядят как тонкие, обычно темные линии, делящие соседние клетки сердечной мышцы. Вставные диски проходят перпендикулярно направлению мышечных волокон. Под электронной микроскопией путь интеркалированного диска кажется более сложным. При малом увеличении это может выглядеть как запутанная электронно-плотная структура, перекрывающая место затемненной Z-линии. При большом увеличении траектория интеркалированного диска кажется еще более извилистой, причем в продольном сечении появляются как продольные, так и поперечные области.

Фибробласты

Сердечные фибробласты - жизненно важные опорные клетки сердечной мышцы. Они не могут обеспечить сильное сокращение, как кардиомиоциты , но вместо этого в значительной степени ответственны за создание и поддержание внеклеточного матрикса, который образует раствор, в который встроены кирпичики кардиомиоцитов. Фибробласты играют решающую роль в реакции на травмы, такие как инфаркт миокарда . После травмы фибробласты могут активироваться и превращаться в миофибробласты - клетки, которые проявляют поведение где-то между фибробластом (генерирующим внеклеточный матрикс) и гладкомышечной клеткой (способность сокращаться). В этом качестве фибробласты могут восстанавливать травму, создавая коллаген, при этом мягко сокращаясь, чтобы сблизить края поврежденной области.

Фибробласты меньше, но их больше, чем кардиомиоцитов, и к кардиомиоциту может присоединяться сразу несколько фибробластов. Когда они прикреплены к кардиомиоциту, они могут влиять на электрические токи, проходящие через поверхностную мембрану мышечной клетки, и в данном контексте называются электрически связанными. Другие потенциальные роли фибробластов включают электрическую изоляцию проводящей системы сердца и способность трансформироваться в другие типы клеток, включая кардиомиоциты и адипоциты .

Продолжая аналогию сердечной мышцы как стены, внеклеточный матрикс - это раствор, который окружает кирпичи кардиомиоцитов и фибробластов. Матрикс состоит из белков, таких как коллаген и эластин, а также полисахаридов (сахарных цепей), известных как гликозаминогликаны . Вместе эти вещества обеспечивают поддержку и силу мышечным клеткам, создают эластичность сердечной мышцы и поддерживают гидратации мышечных клеток, связывая молекулы воды.

Матрикс, находящийся в непосредственном контакте с мышечными клетками, называется базальной мембраной , в основном состоящей из коллагена IV типа и ламинина . Кардиомиоциты связаны с базальной мембраной через специализированные гликопротеины, называемые интегринами .

Физиология

Изолированная клетка сердечной мышцы, биение

Физиология сердечной мышцы имеет много общего с физиологией скелетных мышц . Основная функция обоих типов мышц - сокращение, и в обоих случаях сокращение начинается с характерного потока ионов через клеточную мембрану, известного как потенциал действия . Потенциал действия впоследствии вызывает сокращение мышц за счет увеличения концентрации кальция в цитозоле.

Однако механизм повышения концентрации кальция в цитозоле в скелетных и сердечных мышцах различается. В сердечной мышце потенциал действия представляет собой входящий поток ионов натрия и кальция. Поток ионов натрия быстрый, но очень непродолжительный, в то время как поток кальция устойчивый и дает фазу плато, характерную для потенциалов действия сердечной мышцы. Сравнительно небольшой поток кальция через кальциевые каналы L-типа вызывает гораздо большее высвобождение кальция из саркоплазматического ретикулума - явление, известное как высвобождение кальция, вызванное кальцием . Напротив, в скелетных мышцах минимальное количество кальция поступает в клетку во время потенциала действия, и вместо этого саркоплазматический ретикулум в этих клетках напрямую связан с поверхностной мембраной. Это различие может быть проиллюстрировано наблюдением, что волокна сердечной мышцы требуют, чтобы кальций присутствовал в растворе, окружающем клетку, для сокращения, тогда как волокна скелетных мышц будут сокращаться без внеклеточного кальция.

Во время сокращения клетки сердечной мышцы длинные белковые миофиламенты, ориентированные по длине клетки, скользят друг по другу в так называемой гипотезе скользящих волокон . Существует два типа миофиламентов: толстые волокна, состоящие из белка миозина , и тонкие волокна, состоящие из белков актина , тропонина и тропомиозина . По мере скольжения толстых и тонких нитей друг за друга клетка становится короче и толще. В механизме, известном как перекрестный цикл , ионы кальция связываются с белком тропонином, который вместе с тропомиозином затем открывает ключевые сайты связывания на актине. Затем миозин в толстом филаменте может связываться с актином, вытягивая толстые филаменты вдоль тонких филаментов. Когда концентрация кальция в клетке падает, тропонин и тропомиозин снова покрывают участки связывания на актине, заставляя клетку расслабляться.

Регенерация

Сердечная мышца собаки (400X)

До недавнего времени считалось, что клетки сердечной мышцы не могут быть регенерированы. Однако исследование, опубликованное в журнале Science от 3 апреля 2009 г., опровергает это мнение. Олаф Бергманн и его коллеги из Каролинского института в Стокгольме протестировали образцы сердечной мышцы людей, родившихся до 1955 года, у которых было очень мало сердечной мышцы вокруг сердца, многие из которых были инвалидами из-за этой аномалии. Используя образцы ДНК из многих сердец, исследователи подсчитали, что четырехлетний ребенок обновляет около 20% клеток сердечной мышцы в год, а около 69 процентов клеток сердечной мышцы 50-летнего человека образовались после того, как он или она родилась.

Одним из способов регенерации кардиомиоцитов является деление ранее существовавших кардиомиоцитов в ходе нормального процесса старения.

В 2000-х годах было сообщено об открытии эндогенных кардиальных стволовых клеток взрослых, и были опубликованы исследования, в которых утверждалось, что различные линии стволовых клеток, включая стволовые клетки костного мозга , способны дифференцироваться в кардиомиоциты и могут использоваться для лечения сердечной недостаточности . Однако другие команды не смогли воспроизвести эти результаты, и многие из оригинальных исследований были позже отозваны за научное мошенничество.

Различия между предсердиями и желудочками

Сердечная мышца образует как предсердия, так и желудочки сердца. Хотя эта мышечная ткань между камерами сердца очень похожа, существуют некоторые различия. Миокард, обнаруженный в желудочках, толстый, чтобы допускать сильные сокращения, тогда как миокард в предсердиях намного тоньше. Отдельные миоциты, составляющие миокард, также различаются между камерами сердца. Кардиомиоциты желудочков длиннее и шире, с более плотной сетью Т-канальцев . Хотя фундаментальные механизмы управления кальцием у кардиомиоцитов желудочков и предсердий схожи, переходный процесс кальция меньше и быстрее распадается в миоцитах предсердий с соответствующим увеличением буферной способности кальция . Набор ионных каналов различается в зависимости от камеры, что приводит к увеличению продолжительности потенциала действия и эффективным рефрактерным периодам в желудочках. Некоторые ионные токи, такие как I K (UR) , очень специфичны для кардиомиоцитов предсердий, что делает их потенциальной мишенью для лечения фибрилляции предсердий .

Клиническое значение

Заболевания, поражающие сердечную мышцу, имеют огромное клиническое значение и являются основной причиной смерти в развитых странах. Наиболее частым заболеванием, поражающим сердечную мышцу, является ишемическая болезнь сердца , при которой снижается кровоснабжение сердца. При ишемической болезни сердца коронарные артерии сужаются из-за атеросклероза . Если эти сужения постепенно становятся серьезными достаточно , чтобы частично ограничить приток крови, синдром стенокардии стенокардии может произойти. Обычно это вызывает боль в груди при нагрузке, которая облегчается отдыхом. Если коронарная артерия внезапно становится очень суженной или полностью заблокированной, что прерывает или резко снижает кровоток по сосуду, происходит инфаркт миокарда или сердечный приступ. Если закупорку не устранить быстро с помощью лекарств , чрескожного коронарного вмешательства или хирургического вмешательства , то область сердечной мышцы может стать необратимой и поврежденной.

Сердечная мышца также может быть повреждена, несмотря на нормальное кровоснабжение. Сердечная мышца может воспаляться при состоянии, называемом миокардитом , чаще всего вызванным вирусной инфекцией, но иногда вызываемым собственной иммунной системой организма . Сердечная мышца также может быть повреждена наркотиками, такими как алкоголь, длительно сохраняющееся высокое кровяное давление или гипертония или постоянное нарушение сердечного ритма . Специфические заболевания сердечной мышцы, называемые кардиомиопатиями, могут привести к тому, что сердечная мышца станет ненормально толстой ( гипертрофическая кардиомиопатия ), аномально большой ( дилатационная кардиомиопатия ) или аномально жесткой ( рестриктивная кардиомиопатия ). Некоторые из этих состояний вызваны генетическими мутациями и могут передаваться по наследству.

Многие из этих состояний, если они достаточно серьезны, могут настолько сильно повредить сердце, что насосная функция сердца будет снижена. Если сердце больше не может перекачивать достаточно крови для удовлетворения потребностей организма, это называется сердечной недостаточностью .

Смотрите также

Ссылки

внешние ссылки

Сердечная мышечная ткань - мышечная ткань сердца

Содержание статьи:

  1. Что такое сердечно мышечная ткань
  2. Работа сердечной мышечной ткани
  3. Структура сердечно мышечной ткани

Сердечная мышечная ткань, или миокард, является специализированным типом мышечной ткани, которая формирует сердце. Эта мышечная ткань, которая сокращается и высвобождается непроизвольно, отвечает за поддержание сердечной перекачки крови по всему телу.

Человеческое тело содержит три различных вида мышечной ткани: скелетную, гладкую и сердечную. В сердце присутствует только ткань сердечной мышцы, содержащая клетки, называемые миоцитами.

В этой статье мы обсудим структуру и функцию ткани сердечной мышцы. Мы также покрываем медицинские условия которые могут повлиять на ткань сердечной мышцы.

Что такое сердечно мышечная ткань

Мышца-это волокнистая ткань, которая сокращается, чтобы произвести движение. Существует три типа мышечной ткани в организме: скелетная, гладкая и сердечная. Сердечная мышца высокоорганизована и содержит много типов клеток, включая фибробласты, гладкомышечные клетки и кардиомиоциты.

Сердечная мышца существует только в сердце. Он содержит клетки сердечной мышцы, которые выполняют высоко скоординированные действия, которые поддерживают сердечный насос и кровь, циркулирующую по всему телу.

В отличие от скелетной мышечной ткани, такой как та, что присутствует в руках и ногах, движения, которые производит сердечная мышечная ткань, непроизвольны. Это означает, что они автоматические, и человек не может их контролировать.

Работа сердечной мышечной ткани

Сердце также содержит специализированные типы сердечной ткани, содержащие клетки “кардиостимулятора”. Они сжимаются и расширяются в ответ на электрические импульсы от нервной системы.

Клетки кардиостимулятора генерируют электрические импульсы, или потенциалы действия, которые говорят клеткам сердечной мышцы сокращаться и расслабляться. Клетки кардиостимулятора контролируют частоту сердечных сокращений и определяют, насколько быстро сердце перекачивает кровь.

Структура сердечно мышечной ткани

Ткань сердечной мышцы получает свои прочность и гибкость от своих соединенных клеток сердечной мышцы, или волокон.

Большинство клеток сердечной мышцы содержат одно ядро, но некоторые имеют два. Ядро содержит весь генетический материал клетки.

Клетки сердечной мышцы также содержат митохондрии, которые многие люди называют “энергетическими домами клеток”. Это органеллы, которые преобразуют кислород и глюкозу в энергию в виде аденозинтрифосфата (АТФ).

Клетки сердечной мышцы кажутся полосатыми под микроскопом. Эти полосы возникают из-за чередующихся нитей, которые содержат миозин и актиновые белки. Темные полосы указывают на толстые нити, которые содержат белки миозина. Тонкие, более легкие нити содержат актин.

Когда сердечная мышечная клетка сокращается, миозиновая нить притягивает актиновые нити друг к другу, что заставляет клетку сжиматься. Клетка использует АТФ для питания этого сокращения.

Одна миозиновая нить соединяется с двумя актиновыми нитями с каждой стороны. Это образует единый блок мышечной ткани.

Интеркалированные диски соединяют клетки сердечной мышцы. Переходы зазора внутри интеркалированных дисков передают электрические импульсы от одной клетки сердечной мышцы к другой.

Десмосомы-это другие структуры, присутствующие в интеркалированных дисках. Они помогают удерживать сердечные мышечные волокна вместе.

Кардиомиопатия относится к группе заболеваний, которые влияют на ткани сердечной мышцы и ухудшают способность сердца качать кровь или нормально расслабляться.

Некоторые общие симптомы кардиомиопатии включают:

  • затрудненное дыхание или одышка
  • усталость
  • припухлость ног, лодыжек и ступней
  • воспаление в области живота или шеи
  • нерегулярное сердцебиение
  • шум в сердце
  • головокружение

Факторы, которые могут увеличить риск развития кардиомиопатии у человека включают в себя:

  • диабет
  • заболевание щитовидной железы
  • ишемическая болезнь сердца
  • сердечный приступ
  • хроническое высокое кровяное давление
  • вирусные инфекции, поражающие сердечную мышцу
  • клапанная болезнь сердца
  • потребление алкоголя
  • семейный анамнез кардиомиопатии

Сердечный приступ из-за закупорки артерии может прервать кровоснабжение определенных участков сердца. В конечном счете, ткань сердечной мышцы в этих областях начнет умирать.

Смерть ткани сердечной мышцы может также произойти когда потребность сердца в кислороде превышает поставку кислорода. Это вызывает высвобождение сердечных белков, таких как тропонин, в кровоток.

Некоторые примеры кардиомиопатии включают в себя:

Дилатационная кардиомиопатия

Дилатационная кардиомиопатия вызывает растяжение сердечной мышечной ткани левого желудочка и расширение камер сердца.

Гипертрофическая кардиомиопатия

Гипертрофическая кардиомиопатия (ГКМ) – это генетическое состояние, при котором кардиомиоциты не расположены скоординированным образом и вместо этого дезорганизованы. ГКМ может прервать кровоток из желудочков, вызвать аритмии (аномальные электрические ритмы) или привести к застойной сердечной недостаточности.

Рестриктивная кардиомиопатия

Рестриктивная кардиомиопатия (РМК) относится к тем случаям, когда стенки желудочков становятся жесткими. Когда это происходит, желудочки не могут расслабиться достаточно, чтобы заполнить достаточным количеством крови.

Аритмогенная дисплазия правого желудочка

Эта редкая форма кардиомиопатии вызывает жировую инфильтрацию в ткани сердечной мышцы в правом желудочке.

Транстиретиновая амилоидная кардиомиопатия

Транстиретиновая амилоидная кардиомиопатия (АТР-км) развивается тогда, когда амилоидные белки накапливаются и образуют отложения в стенках левого желудочка. Отложения амилоида вызывают застывание стенок желудочка, что препятствует наполнению желудочка кровью и снижает его способность откачивать кровь из сердца. Это форма RCM.

Некоторые советы для поддержания здоровья сердечной мышцы.

Выполнение регулярных аэробных упражнений может помочь укрепить ткани сердечной мышцы и сохранить сердце и легкие здоровыми.

Аэробная деятельность включает в себя перемещение больших скелетных мышц, что заставляет человека дышать быстрее, а их сердцебиение учащаться.

Некоторые примеры аэробных упражнений включают в себя:

  • бег или бег трусцой
  • прогулка или пеший туризм
  • езда на велосипеде
  • плавание
  • скакалка
  • танцы
  • подъем по лестнице

Министерство здравоохранения дает следующие рекомендации в своих руководящих принципах физической активности:

  • Детям в возрасте 6-17 лет следует ежедневно выполнять 60 минут умеренной – и высокоинтенсивной физической нагрузки.
  • Взрослые в возрасте 18 лет и старше должны выполнять 150 минут аэробных упражнений средней интенсивности или 75 минут аэробных упражнений высокой интенсивности каждую неделю.
  • Беременные женщины должны стараться делать не менее 150 минут аэробной активности средней интенсивности в неделю.

Также предполагают, что человек должен стараться распространять аэробную активность в течение всей недели. Взрослые с хроническими заболеваниями или инвалидностью могут заменить аэробные упражнения по крайней мере двумя сеансами укрепления мышц в неделю.

Краткие сведения

Сердечная мышечная ткань-это специализированный, организованный тип ткани, который существует только в сердце. Он отвечает за поддержание сердечного ритма и циркуляции крови в теле.

Ткань сердечной мышцы, или миокард, содержит клетки, которые расширяются и сокращаются в ответ на электрические импульсы от нервной системы. Эти сердечные клетки работают вместе, чтобы произвести ритмичные, волнообразные сокращения, которые являются сердцебиением.

Регулярные аэробные упражнения могут помочь укрепить ткань сердечной мышцы и снизить риск сердечного приступа, инсульта и других сердечно-сосудистых заболеваний.

Поперечно-полосатая мышца: строение, расположение, функция

Авторизоваться регистр
  • Анатомия
    • Основы
    • Верхняя конечность
    • Нижняя конечность
    • Позвоночник и спина
    • Грудь
    • Брюшная полость и таз
    • Голова и шея
    • Нейроанатомия
    • Поперечные сечения
  • Гистология
    • Общие
    • Системы
    • Ткани плода
  • Медицинская визуализация
    • Голова и шея
    • Брюшная полость и таз
    • Верхняя конечность
    • Нижняя конечность
    • Грудь
Немецкий португальский Получить помощь Как учиться EN | DE | PT Получить помощь Как учиться Авторизоваться регистр Анатомия Основы Терминология Первый взгляд на кости и мышцы Первый взгляд на нейроваскуляризацию Первый взгляд на системы Верхняя конечность Плечо и рука Локоть и предплечье Запястье и рука .

Сердце - AMBOSS

Последнее обновление: 31 июля 2020 г.

Сводка

Сердце - это мышечный орган, расположенный в среднем средостении, который перекачивает кровь по кровеносной системе. Сердце окружено перикардом и разделено на четыре камеры: два предсердия и два желудочка. Правое предсердие и желудочек часто называют правым сердцем, а левое предсердие и желудочек часто называют левым сердцем. Предсердия и желудочки разделены атриовентрикулярными клапанами, тогда как желудочки и артериальные пути оттока сердца (а именно легочный ствол и аорта) разделены полулунными клапанами.Стенка сердца состоит из эндокарда (самого внутреннего), миокарда и эпикарда. Проводящая система сердца состоит из специализированных узлов и кардиостимуляторов, которые инициируют и координируют сокращение сердца.
Правое сердце получает дезоксигенированную кровь из большого круга кровообращения и перекачивает ее через малый круг кровообращения, где она насыщается кислородом. Затем левое сердце получает насыщенную кислородом кровь из малого круга кровообращения и перекачивает ее по кровеносным сосудам большого круга кровообращения.Коронарные артерии, а именно правая коронарная артерия и левая коронарная артерия, возникают в корне аорты и снабжают миокард и эндокард. Сердце развивается эмбриологически из сердечной трубки, которая подвергается петлеобразованию и перегородке, чтобы разделить его на четыре камеры.

Макроанатомия

Обзор

Левое предсердие - это самая задняя часть сердца, расположенная непосредственно перед пищеводом. Это можно визуализировать с помощью TEE. Правый желудочек является самой передней частью сердца и подвергается наибольшему риску травмы в результате травмы грудной клетки.

Сокращение верхушки сердца обычно можно пальпировать слева от грудины, медиальнее среднеключичной линии в межреберье 4 –5 . У пациентов с декстрокардией ориентация сердца обратная, поэтому верхушка располагается справа от средостения, а не слева.

Камеры сердца

Два предсердия

Разделены межпредсердной перегородкой (Овальная ямка видна на перегородке в виде небольшого углубления овальной формы в межпредсердной перегородке.)

Два желудочка сердца

  • Правый желудочек
  • Левый желудочек

Границы сердца

Границы сердца образуют силуэт сердца на рентгенограмме грудной клетки!

Сердечные клапаны

  • Два типа сердечных клапанов, которые различаются расположением и морфологией
  • Каркас сердца
    • Состоит из четырех фиброзных колец (annuli fibrosi cordis), окружающих атриовентрикулярное и артериальное отверстия.
    • Функция
      • Разделяет предсердия и желудочки
      • Обеспечивает анкерную и структурную поддержку клапанов
      • Обеспечивает электрическую изоляцию между предсердиями и желудочками
  • Закрытие сердечных клапанов производит тоны сердца (подробнее см. Аускультацию сердца при обследовании сердечно-сосудистой системы.)

Эта мнемоника показывает порядок, в котором кровь течет через сердечные клапаны: Попробуйте ПУЛЛИНГ Мою АОРТУ (трикуспидальную, легочную, митральную, аортальную)!

Атриовентрикулярные клапаны

  • Строение: створки на подклапанном аппарате
  • Клапаны
  • Подклапанный аппарат

Эта мнемоника обеспечивает правило двойки и тройки для атриовентрикулярных клапанов: у трехстворчатого клапана есть три створки и он расположен с правой стороны, как и трехлопастное правое легкое.Двустворчатый (митральный) клапан имеет две створки и расположен с левой стороны, как и двухстворчатый клапан

.

изображений, стоковых фотографий и векторных изображений поперечно-полосатых мышц

В настоящее время вы используете более старую версию браузера, и ваш опыт может быть не оптимальным. Пожалуйста, подумайте об обновлении. Учить больше. ImagesImages homeCurated collectionsPhotosVectorsOffset ImagesCategoriesAbstractAnimals / WildlifeThe ArtsBackgrounds / TexturesBeauty / FashionBuildings / LandmarksBusiness / FinanceCelebritiesEditorialEducationFood и DrinkHealthcare / MedicalHolidaysIllustrations / Clip-ArtIndustrialInteriorsMiscellaneousNatureObjectsParks / OutdoorPeopleReligionScienceSigns / SymbolsSports / RecreationTechnologyTransportationVectorsVintageAll categoriesFootageFootage homeCurated collectionsShutterstock SelectShutterstock ElementsCategoriesAnimals / WildlifeBuildings / LandmarksBackgrounds / TexturesBusiness / FinanceEducationFood и DrinkHealth CareHolidaysObjectsIndustrialArtNaturePeopleReligionScienceTechnologySigns / SymbolsSports / RecreationTransportationEditorialAll categoriesTemplatesTemplates ГлавнаяШаблоны социальных сетейОбложка FacebookFacebook Mobile CoverInstagram StoryTwitter BannerYouTube Channel ArtШаблоны печатиВизитная карточкаСертификатКупонFlyerПодарочный сертификатРедакцияДома редакцииРазвлеченияНовостиРояльностьСпортMus icMusic homePremiumBeatToolsShutterstock EditorMobile appsPluginsImage resizerFile converterCollage makerColor schemesBlogBlog homeDesignVideoContributorNews
PremiumBeat blogEnterprisePricing

Вход

Зарегистрироваться

Меню

FiltersClear allAll изображений
  • Все изображения
  • Фото
  • Vectors
  • Иллюстрации
  • Editorial
  • Видеоматериал
  • Музыка

  • Поиск по изображению

поперечно-полосатая мышца

Сортировать по

Наиболее релевантные

Свежий контент

Тип изображения

Все изображения

Фото

Векторы

Иллюстрации

Ориентация

Все ориентации

По горизонтали

По вертикали

Цвет .

Ткань сердечной мышцы: определение, функция и структура

Ткань сердечной мышцы, или миокард, представляет собой особый тип мышечной ткани, образующей сердце. Эта мышечная ткань, которая непроизвольно сокращается и расслабляется, отвечает за то, чтобы сердце перекачивало кровь по всему телу.

Человеческое тело состоит из трех видов мышечной ткани: скелетной, гладкой и сердечной. В сердце присутствует только ткань сердечной мышцы, состоящая из клеток, называемых миоцитами.

В этой статье мы обсуждаем структуру и функцию сердечной мышечной ткани. Мы также рассказываем о заболеваниях, которые могут повлиять на ткань сердечной мышцы, и даем советы по поддержанию ее здоровья.

Поделиться на PinterestЧеловек может укрепить сердечную мышечную ткань, выполняя регулярные упражнения.

Мышца - это фиброзная ткань, которая сокращается для движения. В теле есть три типа мышечной ткани: скелетная, гладкая и сердечная. Сердечная мышца высокоорганизована и содержит множество типов клеток, включая фибробласты, гладкомышечные клетки и кардиомиоциты.

Сердечная мышца существует только в сердце. Он содержит клетки сердечной мышцы, которые выполняют четко скоординированные действия, поддерживая работу сердца и циркуляцию крови по всему телу.

В отличие от ткани скелетных мышц, таких как ткани рук и ног, движения, производимые тканью сердечной мышцы, являются непроизвольными. Это означает, что они автоматические, и человек не может их контролировать.

Сердце также содержит специализированные типы сердечной ткани, содержащие клетки «водителя ритма».Они сжимаются и расширяются в ответ на электрические импульсы нервной системы.

Клетки кардиостимулятора генерируют электрические импульсы или потенциалы действия, которые заставляют клетки сердечной мышцы сокращаться и расслабляться. Клетки кардиостимулятора контролируют частоту сердечных сокращений и определяют, насколько быстро сердце перекачивает кровь.

Ткань сердечной мышцы получает свою силу и гибкость за счет связанных между собой клеток сердечной мышцы или волокон.

Большинство клеток сердечной мышцы содержат одно ядро, но некоторые имеют два.В ядре находится весь генетический материал клетки.

Клетки сердечной мышцы также содержат митохондрии, которые многие называют «электростанциями клеток». Это органеллы, которые превращают кислород и глюкозу в энергию в форме аденозинтрифосфата (АТФ).

Клетки сердечной мышцы под микроскопом кажутся полосатыми или полосатыми. Эти полосы возникают из-за чередования нитей, которые содержат миозин и белки актина. Темные полосы указывают на толстые филаменты, которые содержат белки миозина.Тонкие и светлые нити содержат актин.

Когда клетка сердечной мышцы сокращается, миозиновая нить притягивает актиновые нити друг к другу, что приводит к сокращению клетки. Клетка использует АТФ для обеспечения этого сокращения.

Один миозиновый филамент соединяется с двумя актиновыми филаментами с обеих сторон. Это образует единое целое мышечной ткани, называемое саркомером.

Вставные диски соединяют клетки сердечной мышцы. Щелевые соединения внутри вставочных дисков передают электрические импульсы от одной клетки сердечной мышцы к другой.

Десмосомы - это другие структуры, присутствующие в интеркалированных дисках. Они помогают удерживать волокна сердечной мышцы вместе.

Поделиться на Pinterest Затрудненное дыхание или одышка могут быть симптомом кардиомиопатии.

Кардиомиопатия относится к группе заболеваний, которые поражают ткань сердечной мышцы и ухудшают способность сердца нормально перекачивать кровь или расслабляться.

Некоторые общие симптомы кардиомиопатии включают:

  • затрудненное дыхание или одышку
  • усталость
  • отек ног, лодыжек и ступней
  • воспаление в брюшной полости или шее
  • нерегулярное сердцебиение
  • шумы в сердце
  • головокружение или дурноту

Факторы, которые могут увеличить риск кардиомиопатии, включают:

Сердечный приступ из-за закупорки артерии может нарушить кровоснабжение определенных областей сердца.Со временем ткань сердечной мышцы в этих областях начнет отмирать.

Отмирание сердечной мышечной ткани может также произойти, когда потребность сердца в кислороде превышает его снабжение. Это вызывает выброс сердечных белков, таких как тропонин, в кровоток.

Подробнее о том, как повышенный уровень тропонина может указывать на повреждение сердца, читайте здесь.

Некоторые примеры кардиомиопатии включают:

Дилатационная кардиомиопатия

Дилатационная кардиомиопатия заставляет сердечную мышечную ткань левого желудочка растягиваться и камеры сердца расширяться.

Гипертрофическая кардиомиопатия

Гипертрофическая кардиомиопатия (ГКМП) - это генетическое заболевание, при котором кардиомиоциты не расположены скоординированным образом, а вместо этого дезорганизованы. ГКМП может прерывать кровоток из желудочков, вызывать аритмию (аномальные электрические ритмы) или приводить к застойной сердечной недостаточности.

Рестриктивная кардиомиопатия

Рестриктивная кардиомиопатия (ОКМ) - это когда стенки желудочков становятся жесткими. Когда это происходит, желудочки не могут расслабиться достаточно, чтобы наполниться достаточным количеством крови.

Аритмогенная дисплазия правого желудочка

Эта редкая форма кардиомиопатии вызывает жировую инфильтрацию в ткани сердечной мышцы в правом желудочке.

Транстиретин-амилоидная кардиомиопатия

Транстиретин-амилоидная кардиомиопатия (ATTR-CM) развивается, когда амилоидные белки накапливаются и образуют отложения в стенках левого желудочка. Отложения амилоида заставляют стенки желудочка становиться жесткими, что препятствует его наполнению кровью и снижает его способность перекачивать кровь из сердца.Это форма RCM.

Поделиться в Pinterest Дети должны заниматься физической активностью средней и высокой интенсивности по 60 минут каждый день.

Регулярные аэробные упражнения могут помочь укрепить сердечную мышечную ткань и сохранить здоровье сердца и легких.

Аэробные упражнения связаны с движением крупных скелетных мышц, что заставляет человека дышать быстрее и учащается сердцебиение.

Выполнение этих видов деятельности часто может тренировать сердце, чтобы стать более эффективным.

Некоторые примеры аэробных упражнений включают:

  • бег или бег трусцой
  • ходьба или пеший туризм
  • езда на велосипеде
  • плавание
  • прыжки через скакалку
  • танцы
  • прыгуны
  • подъем по лестнице

Департамент здравоохранения и человека Службы (DHHS) дают следующие рекомендации в своих Руководствах по физической активности для американцев:

  • Дети в возрасте 6–17 лет должны выполнять 60 минут физической активности умеренной или высокой интенсивности каждый день.
  • Взрослые в возрасте 18 лет и старше должны выполнять 150 минут аэробных упражнений средней интенсивности или 75 минут высокоинтенсивных аэробных упражнений каждую неделю.
  • Беременные женщины должны стараться заниматься аэробной нагрузкой средней интенсивности не менее 150 минут в неделю.

DHHS также рекомендует, чтобы человек старался распределить аэробную активность в течение недели. Взрослые с хроническими заболеваниями или ограниченными возможностями могут заменить аэробные упражнения как минимум двумя занятиями по укреплению мышц в неделю.

Ткань сердечной мышцы - это особый организованный тип ткани, который существует только в сердце. Он отвечает за работу сердца и циркуляцию крови по телу.

Ткань сердечной мышцы, или миокард, содержит клетки, которые расширяются и сокращаются в ответ на электрические импульсы нервной системы. Эти сердечные клетки работают вместе, чтобы производить ритмичные, волнообразные сокращения, которые и есть сердцебиение.

Регулярные аэробные упражнения могут помочь укрепить сердечную мышечную ткань и снизить риск сердечного приступа, инсульта и других сердечно-сосудистых заболеваний.

.

Анатомия, грудная клетка, сердечные мышцы - StatPearls

Введение

Мышцы сердца выстилают миокард или средний слой стенок сердца и отвечают за сократительную функцию сердечного насоса. Состоящая из кардиомиоцитов, сердечная мышца имеет отличительные клеточные и физиологические особенности, позволяющие ей генерировать силу для поддержания адекватной перфузии тканей и органов по всему телу. Сердечная мышца - один из первых функционирующих эмбриональных органов, который продолжает сокращаться и сокращаться в процессе развития на протяжении всей жизни.Кардиомиоциты, обеспечиваемые сложной системой коронарных сосудов, сердечной лимфатической системы и вегетативной иннервации, выстилают самый толстый слой каждой камеры сердца. Сердечно-сосудистые заболевания - основная причина смертности во всем мире. Огромное количество этих заболеваний затрагивает сердечные мышцы с различными механизмами патофизиологии, что приводит к сократительной дисфункции, повреждению и гибели клеток, а также отказу сердечной помпы. Однако многочисленные вмешательства, варианты лечения и методы лечения направлены на минимизацию повреждений, восстановление функциональности, предотвращение возникновения и снижение риска сердечно-сосудистых заболеваний.

Структура и функции

Три отдельных слоя составляют стенки сердца, от внутреннего до внешнего:

Мышцы сердца, называемые миокардом, составляют средний и самый толстый слой сердечной стенки. Этот слой находится между одноклеточным слоем эндокарда, который выстилает внутренние камеры, и внешним эпикардом, который составляет часть перикарда, который окружает и защищает сердце. Гистологически сердечные мышцы состоят из клеток, называемых кардиомиоцитами, которые обладают уникальными структурами и свойствами, соответствующими их сократительной функции.[1] Кардиомиоциты - это поперечно-полосатые одноядерные мышечные клетки, находящиеся исключительно в сердечной мышце. Уникальной клеточной и физиологической особенностью кардиомиоцитов являются интеркалированные диски, которые содержат клеточные адгезии, такие как щелевые соединения, для облегчения межклеточной коммуникации. Эти диски уменьшают внутреннее сопротивление и позволяют потенциалам действия быстро распространяться по всей сердечной мышце за счет прохождения заряженных ионов. Таким образом, сердечная мышца действует как функциональный синцитий с быстрыми синхронизированными сокращениями, которые отвечают за перекачивание крови по всему телу.Функционально сердечные мышцы полагаются на электрохимические градиенты и потенциалы для создания сократительной силы при каждом ударе сердца.

Синусовый узел, расположенный в миокарде правого предсердия, спонтанно деполяризуется и, таким образом, определяет частоту сердечных сокращений. Эти деполяризации представляют собой потоки притока ионов, которые переносятся от синусового узла к сердечной мышце через проводящие клетки. Когда деполяризация достигает сердечной мышцы, открываются потенциалозависимые натриевые каналы, обеспечивая быстрый приток ионов натрия в кардиомиоциты, деполяризуя клетки.Положительный мембранный потенциал запускает потенциалзависимые калиевые, а затем и кальциевые каналы, чтобы открыться, позволяя калию выбегать, а кальций устремляться внутрь. Первоначальный приток кальция необходим для второго высвобождения кальция из саркоплазматической сети, находящейся в клетках сердечной мышцы . Накопление внутриклеточных ионов кальция связывается с тропонином С, отодвигая тропомиозин в сторону, позволяя связывать актин-миозин и перекрестные мосты, ответственные за сокращение мышц. [1] Количество высвобожденного кальция прямо пропорционально количеству разрешенного актин-миозинового взаимодействия и, таким образом, коррелирует с сократительной силой генерируемой сердечной мышцы.Физиологически это соответствует таким параметрам, как ударный объем, фракция выброса и сердечный выброс, которые используются для оценки функции сердца. В конце каждого цикла кальций восстанавливается в саркоплазматическом ретикулуме с помощью насосов SERCA (Sarco (эндо) плазматический ретикулум (SER) Ca2 + ATPase), в то время как насосы натрия-калия и натрия-кальция АТФазы восстанавливают мембранный потенциал кардиомиоцитов, поэтому цикл может повторяться. со следующей приходящей деполяризацией. [1]

Эмбриология

Сердечная мышца берет свое начало из слоя мезодермы и начинает формироваться на третьей неделе эмбрионального развития.Мезодерма служит основным источником клеток-предшественников миокарда, которые составляют кардиогенное или первичное поле сердца на раннем этапе развития. Образуется примитивная эндотелиальная сердечная трубка в форме подковы, которая начинает сокращаться, облегчая раннюю систему кровообращения эмбриона. В течение следующих нескольких недель пролиферация кардиомиоцитов необходима для расширения миокардиального слоя и создания многокамерной системы зрелого сердца. [2] В то время как существующие кардиомиоциты способствуют росту миокарда за счет пролиферации и организации, новые клетки сердечной мышцы также привлекаются из соседних мезенхимальных слоев, что еще больше увеличивает мышечный слой.[2] После развития миокарда стенки сердца подвергаются дальнейшему созреванию, уплотнению и трабекуляции. Расширение или набухание эмбриональных структур сердечной трубки вместе с миграцией клеток нервного гребня способствует развитию камер и путей притока / оттока. Эти процессы приводят к зрелому и полностью функциональному сердцу, сокращающемуся к восьмой эмбриональной неделе и на протяжении всей взрослой жизни.

Кровоснабжение и лимфатика

Кровоснабжение сердечных мышц происходит непосредственно из системы коронарных артерий, которые проходят внутри эпикардиального слоя.Две главные коронарные артерии, левая коронарная артерия (LCA) и правая коронарная артерия (RCA), отходят непосредственно от аорты через коронарную остию. Эти артерии и их ветви снабжают притоками артерии, которые проходят перпендикулярно поверхности сердца и поперек эпикарда, через миокард и вниз к эндокарду. [3] LCA быстро разветвляется на левую переднюю нисходящую коронарную артерию (LAD) и левую огибающую (LCX) коронарную артерию. ПМЖВ проходит вертикально вниз по межжелудочковой борозде к верхушке и снабжает кровью передний миокард левого желудочка, передние две трети миокарда межжелудочковой перегородки и переднебоковую папиллярную мышцу, соединяющую митральные клапаны.LCX проходит горизонтально вдоль предсердно-желудочковой борозды и дает начало левой тупой маргинальной коронарной артерии, вместе снабжая латеральный и задний миокард левого желудочка. ПКА проходит горизонтально вдоль правой предсердно-желудочковой борозды и дает начало правой острой краевой коронарной артерии, которая снабжает миокард правого желудочка. RCA также дает начало

.

изображений, стоковых фотографий и векторных изображений сердечной мышцы

В настоящее время вы используете более старую версию браузера, и работа с ней может быть не оптимальной. Пожалуйста, подумайте об обновлении. Учить больше. ImagesImages homeCurated collectionsPhotosVectorsOffset ImagesCategoriesAbstractAnimals / WildlifeThe ArtsBackgrounds / TexturesBeauty / FashionBuildings / LandmarksBusiness / FinanceCelebritiesEditorialEducationFood и DrinkHealthcare / MedicalHolidaysIllustrations / Clip-ArtIndustrialInteriorsMiscellaneousNatureObjectsParks / OutdoorPeopleReligionScienceSigns / SymbolsSports / RecreationTechnologyTransportationVectorsVintageAll categoriesFootageFootage homeCurated collectionsShutterstock SelectShutterstock ElementsCategoriesAnimals / WildlifeBuildings / LandmarksBackgrounds / TexturesBusiness / FinanceEducationFood и DrinkHealth CareHolidaysObjectsIndustrialArtNaturePeopleReligionScienceTechnologySigns / SymbolsSports / RecreationTransportationEditorialAll categoriesTemplatesTemplates ГлавнаяШаблоны социальных сетейОбложка FacebookFacebook Mobile CoverInstagram StoryTwitter BannerYouTube Channel ArtШаблоны печатиВизитная карточкаСертификатКупонFlyerПодарочный сертификатРедакцияДома редакцииРазвлеченияНовостиРояльностьСпортMus icMusic homePremiumBeatИнструментыShutterstock EditorМобильные приложенияПлагиныИзменение размера изображенияФайловый конвертерКонвертер коллажейЦветовые схемыБлогГлавная страница блогаДизайнВидеоКонтроллерНовости
PremiumBeat blogEnterprisePricing

Войти

Зарегистрироваться

Все изображения

.

Смотрите также

3