Расположение и значение скелетных мышц


Скелетные мышцы. Группы скелетных мышц. Строение и функции скелетных мышц

Мышцы – одна из основных составляющих тела. Они основаны на ткани, волокна которой сокращаются под воздействием нервных импульсов, что позволяет телу двигаться и удерживаться в окружающей среде.

Мышцы располагаются в каждой части нашего тела. И даже если мы не знаем об их существовании, они все равно есть. Достаточно, например, первый раз сходить в тренажерный зал или позаниматься аэробикой – на следующий день у вас начнут болеть даже те мышцы, о наличии которых вы и не догадывались.

Они отвечают не только за движение. В состоянии покоя мышцы тоже требуют энергии, чтобы поддерживать себя в тонусе. Это необходимо для того, чтобы в любой момент определенная часть тела смогла ответить на нервный импульс соответствующим движением, а не тратила время на подготовку.

Чтобы понять, как устроены мышцы, предлагаем вспомнить основы, повторить классификацию и заглянуть в клеточное строение мышц. Также мы узнаем о болезнях, которые могут ухудшить их работу, и о том, как укрепить скелетную мускулатуру.

Общие понятия

По своему наполнению и происходящим реакциям мышечные волокна делятся на:

  • поперечно-полосатые;
  • гладкие.

Скелетные мышцы – продолговатые трубчатые структуры, количество ядер в одной клетке которых может доходить до нескольких сотен. Состоят они из мышечной ткани, которая прикреплена к различным частям костного скелета. Сокращения поперечно-полосатых мышц способствуют движениям человека.

Разновидности форм

Чем различаются мышцы? Фото, представленные в нашей статье, помогут нам в этом разобраться.

Скелетные мышцы являются одной из главных составляющих опорно-двигательной системы. Они позволяют двигаться и сохранять равновесие, а также задействованы в процессе дыхания, голосообразования и других функциях.

В организме человека насчитывается более 600 мышц. В процентном соотношении их общая масса составляет 40% от общей массы тела. Мышцы классифицируются по форме и строению:

  • толстые веретенообразные;
  • тонкие пластинчатые.

Классификация упрощает изучение

Деление скелетных мышц на группы осуществляется в зависимости от места нахождения и значения их в деятельности различных органов тела. Основные группы:

Мышцы головы и шеи:

  • мимические – задействуются при улыбке, общении и создании различных гримас, обеспечивая при этом движение составляющих частей лица;
  • жевательные – способствуют смене положения челюстно-лицевого отдела;
  • произвольные мышцы внутренних органов головы (мягкого неба, языка, глаз, среднего уха).

Группы скелетных мышц шейного отдела:

  • поверхностные – способствуют наклонным и вращательным движениям головы;
  • средние – создают нижнюю стенку ротовой полости и способствуют движению вниз челюсти, подъязычной кости и гортанных хрящей;
  • глубокие осуществляют наклоны и повороты головы, создают поднятие первого и второго ребер.

Мышцы, фото которых вы видите здесь, отвечают за туловище и делятся на мышечные пучки следующих отделов:

  • грудной – приводит в действие верхнюю часть торса и руки, а также способствует изменению положения ребер при дыхании;
  • отдел живота – дает движение крови по венам, осуществляет изменения положения грудной клетки при дыхании, воздействует на функционирование кишечного тракта, способствует сгибанию туловища;
  • спинной – создает двигательную систему верхних конечностей.

Мышцы конечностей:

  • верхние – состоят из мышечных тканей плечевого пояса и свободной верхней конечности, помогают двигать рукой в плечевой суставной сумке и создают движения запястья и пальцев;
  • нижние – играют основную роль при передвижении человека в пространстве, подразделяются на мышцы тазового пояса и свободную часть.

Строение скелетной мышцы

В своей структуре она имеет огромное количество мышечных волокон продолговатой формы диаметром от 10 до 100 мкм, длина их колеблется от 1 до 12 см. Волокна (микрофибриллы) бывают тонкими – актиновые, и толстыми – миозиновые.

Первые состоят из белка, имеющего фибриллярную структуру. Он называется актин. Толстые волокна состоят из различных типов миозина. Отличаются они по времени, которое требуется на разложение молекулы АТФ, что обуславливает разную скорость сокращений.

Миозин в гладких мышечных клетках находится в дисперсном состоянии, хотя имеется большое количество белка, который, в свою очередь, является многозначащим в продолжительном тоническом сокращении.

Строение скелетной мышцы похоже на сплетенный из волокон канат или многожильный провод. Сверху ее окружает тонкий чехол из соединительной ткани, называемый эпимизиум. От его внутренней поверхности вглубь мышцы отходят более тонкие разветвления соединительной ткани, создающие перегородки. В них «завернуты» отдельные пучки мышечной ткани, которые содержат до 100 фибрилл в каждом. От них еще глубже отходят более узкие ответвления.

Сквозь все слои в скелетные мышцы проникают кровеносная и нервная системы. Артериальная вена проходит вдоль перимизиума – это соединительная ткань, покрывающая пучки мышечных волокон. Артериальные и венозные капилляры располагаются рядом.

Процесс развития

Скелетные мышцы развиваются из мезодермы. Со стороны нервного желобка образуются сомиты. По истечении времени в них выделяются миотомы. Их клетки, приобретая форму веретена, эволюционируют в миобласты, которые делятся. Некоторые из них прогрессируют, а другие остаются без изменений и образуют миосателлитоциты.

Незначительная часть миобластов, благодаря соприкосновению полюсов, создает контакт между собой, далее в контактной зоне плазмалеммы распадаются. Благодаря слиянию клеток создаются симпласты. К ним переселяются недифференцированные молодые мышечные клетки, находящиеся в одном окружении с миосимпластом базальной мембраны.

Функции скелетных мышц

Эта мускулатура является основой опорно-двигательного аппарата. Если она сильна, тело проще поддерживать в нужном положении, а вероятность появления сутулости или сколиоза сводится к минимуму. О плюсах занятий спортом знают все, поэтому рассмотрим роль, которую играет в этом мускулатура.

Сократительная ткань скелетных мышц выполняет в организме человека множество различных функций, которые нужны для правильного расположения тела и взаимодействия его отдельных частей друг с другом.

Мышцы выполняют следующие функции:

  • создают подвижность тела;
  • берегут тепловую энергию, созданную внутри тела;
  • способствуют перемещению и вертикальному удержанию в пространстве;
  • содействуют сокращению дыхательных путей и помогают при глотании;
  • формируют мимику;
  • способствуют выработке тепла.

Постоянная поддержка

Когда мышечная ткань находится в покое, в ней всегда остается незначительное напряжение, называемое мышечным тонусом. Оно образуется из-за незначительных импульсных частот, которые поступают в мышцы из спинного мозга. Их действие обуславливается сигналами, проникающими из головы к спинным мотонейронам. Тонус мышц также зависит от их общего состояния:

  • растяжения;
  • уровня наполняемости мышечных футляров;
  • обогащения кровью;
  • общего водного и солевого баланса.

Человек обладает способностью регулировать уровень нагрузки мышц. В результате длительных физических упражнений либо сильного эмоционального и нервного перенапряжения тонус мышц непроизвольно увеличивается.

Сокращения скелетных мышц и их разновидности

Эта функция является основной. Но даже она, при кажущейся простоте, может делиться на несколько видов.

Виды сократительных мышц:

  • изотонические – способность мышечной ткани укорачиваться без изменений мышечных волокон;
  • изометрические – при реакции волокно сокращается, но его длина остается прежней;
  • ауксотонические – процесс сокращения мышечной ткани, где длина и напряжение мышц подвергнута изменениям.

Рассмотрим этот процесс более подробно

Сначала мозг посылает через систему нейронов импульс, которых доходит до мотонейрона, примыкающего к мышечному пучку. Далее эфферентный нейрон иннервируется из синоптического пузырька, и выделяется нейромедиатор. Он соединяется с рецепторами на сарколемме мышечного волокна и открывает натриевый канал, который приводит к деполяризации мембраны, вызывающей потенциал действия. При достаточном количестве нейромедиатор стимулирует выработку ионов кальция. Затем он соединяется с тропонином и стимулирует его сокращение. Тот, в свою очередь, оттягивает тропомеазин, позволяя актину соединиться с миозином.

Дальше начинается процесс скольжения актинового филамента относительно миозинового, вследствие чего происходит сокращение скелетных мышц. Разобраться в процессе сжатия поперечно-полосатых мышечных пучков поможет схематическое изображение.

Принцип работы скелетных мышц

Взаимодействие большого количества мышечных пучков способствует различным движениям туловища.

Работа скелетных мышц может происходить такими способами:

  • мышцы-синергисты работают в одном направлении;
  • мышцы-антагонисты способствуют выполнению противоположных движений для осуществления напряжения.

Антагонистическое действие мышц является одним из главных факторов в деятельности опорно-двигательного аппарата. При осуществлении какого-либо действия в работу включаются не только мышечные волокна, которые совершают его, но и их антагонисты. Они способствуют противодействию и придают движению конкретность и грациозность.

Поперечно-полосатая скелетная мышца при воздействии на сустав совершает сложную работу. Ее характер определяется расположением оси сустава и относительным положением мышцы.

Некоторые функции скелетных мышц являются недостаточно освещенными, и зачастую о них не говорят. Например, некоторые из пучков выступают рычагом для работы костей скелета.

Работа мышц на клеточном уровне

Действие скелетной мускулатуры осуществляется за счет двух белков: актина и миозина. Эти составляющие обладают способностью передвигаться относительно друг друга.

Для осуществления работоспособности мышечной ткани необходим расход энергии, заключенной в химических связях органических соединений. Распад и окисление таких веществ происходят в мышцах. Здесь обязательно присутствует воздух, и выделяется энергия, 33% из всего этого расходуется на работоспособность мышечной ткани, а 67% передается другим тканям и тратится на поддержание постоянной температуры тела.

Болезни мускулатуры скелета

В большинстве случаев отклонения от нормы при функционировании мышц обусловлены патологическим состоянием ответственных отделов нервной системы.

Наиболее распространенные патологии скелетных мышц:

  • Мышечные судороги – нарушение электролитного баланса во внеклеточной жидкости, окружающей мышечные и нервные волокна, а также изменения осмотического давления в ней, особенно его повышение.
  • Гипокальциемическая тетания – непроизвольные тетанические сокращения скелетных мышц, наблюдаемые при падении внеклеточной концентрации Са2+ примерно до 40% от нормального уровня.
  • Мышечная дистрофия характеризуется прогрессирующей дегенерацией волокон скелетных мышц и миокарда, а также мышечной нетрудоспособностью, которая может привести к летальному исходу из-за дыхательной либо сердечной недостаточности.
  • Миастения – хроническое аутоиммунное заболевание, при котором в организме образуются антитела к никотиновому ACh-рецептору.

Релаксация и восстановление скелетных мышц

Правильное питание, образ жизни и регулярные тренировки помогут вам стать обладателем здоровых и красивых скелетных мышц. Необязательно заниматься тяжелой атлетикой и наращивать мышечную массу. Достаточно регулярных кардиотренировок и занятий йогой.

Не стоит забывать про обязательный прием необходимых витаминов и минералов, а также регулярные посещения саун и бань с вениками, которые позволяют обогатить кислородом мышечную ткань и кровеносные сосуды.

Систематические расслабляющие массажи повысят эластичность и репродуктивность мышечных пучков. Также положительное воздействие на структуру и функционирование скелетных мышц оказывает посещение криосауны.

анатомия, функции, строение в картинках

Мышечная система – это важная часть опорно-двигательного аппарата. Она помогает поддерживать положение в пространстве, выполнять различные движения. Мышцы человека составляют до 47% веса тела. Физическая нагрузка позволяет укрепить их, повысить массу. Знания об их строении и функциях особенно важны для спортсменов. Это помогает улучшить результаты и снизить негативное воздействие повышенных нагрузок.

Привет, друзья! Мышцы человека и всё об их классификации, функциях, анатомии и строении считаю, что нужно знать, чтобы построить красивое тело быстрее и эффективнее, поэтому сегодня считаю очень важным об этом поговорить.

Структура мышц и принципы их работы

Каждая мышца – это не отдельный орган, а часть единой системы. Она состоит из множества взаимосвязанных клеток – миоцитов, они покрыты рыхлой и плотной соединительной тканью – фасцией.

В структуре каждой мышцы выделяют две зоны:

  1. Брюшко.
  2. Сухожилие.

Основная работа выполняется первой частью. Брюшко состоит из миоцитов, которые способны сокращаться. Поэтому функция этой зоны активная, сократительная.

Сухожилие выполняет пассивную работу – это плотная соединительная ткань, с помощью которой мышца прикрепляется к костям или суставам.

Костно-мышечная система человека работает в тесной взаимосвязи. Кости – это не только место прикрепления мышц, но источник кальция для их сокращения.

В свою очередь мышцы во время работы улучшают питание костей, ускоряя кровообращение и обменные процессы в области надкостницы.

Механизм работы мышечных волокон был открыт в середине XX века. Его назвали теорией скользящих нитей.

Сокращение и расслабление регулируется нервными импульсами с помощью ионов кальция и магния.

Магний – это как тормозная жидкость, позволяющая мышечным волокнам в покое не растрачивать энергию.

При прохождении нервного импульса высвобождаются ионы кальция, которые стимулируют сокращение волокон.

Питание осуществляется через тонкие капилляры, которые проходят между волокнами. Там же располагаются нервные пучки, через которые подается сигнал. Источником энергии служит глюкоза или жирные кислоты.

Обязательно также присутствие ионов кислорода. Причем, эти вещества постоянно должны поступать в организм извне. Мышцы не способны накапливать много АТФ. При недостатке энергии быстро начинается их истощение, утомление, накапливается молочная кислота.

Строение мышц человека

Мышечное волокно – это единая клетка, состоящая из нитей разной толщины.

Она многоядерная, но взаимодействуют волокна только на определенном участке. Он называется саркомером и составляет обычно 30% от длины мышцы. Именно на этом участке она сокращается или растягивается. Эластичность обеспечивается белками коллагеном и эластином.

Обязательно прочитайте мою подробнейшую статью про коллаген для суставов. Уверен, вам понравится.

Оболочка мышечных волокон покрыта миофибриллами. От их количества зависит скорость сокращения мышц и их сила. Тренировки приводят к увеличению толщины и количества миофибрилл. При росте их в 2 раза сила мышцы возрастает в 3 раза.

Сами миоциты состоят по большей части из воды, ее в составе мышечных клеток 70-80%. Есть также в них белки, гликоген, минеральные соли. А оболочка, от которой зависит работа волокон, имеет более сложное строение. В ней выделяют несколько веществ:

  • актин – аминокислота, составляющая тонкие нити, отвечает за сокращение;
  • миозин составляет толстые нити, представляет собой полипептидные цепочки из 2 тысяч аминокислот;
  • актиномиозин – комплекс белков, образующийся при их взаимодействии.

Благодаря такому сложному строению каждое мышечное волокно способно выдерживать серьезные нагрузки. Сила мышц зависит от количества миоцитов, а также от входящих в их состав микроэлементов.

Если их клетки не будут получать белки, глюкозу, жирные кислоты и кислород, способность к сокращению снизится, они будут уменьшаться в размерах.

Типы мышц человека

В зависимости от строения, функций и расположения вся мышечная ткань в организме человека делится на три группы.

  • Гладкие мышцы составляют стенки внутренних органов и кровеносных сосудов. Они работают автоматически, непрерывно, не зависимо от сознания. С их помощью передвигается пищевой комок по пищеварительной системе, работает мочевой пузырь, поднимается или опускается артериальное давление.
  • Сердечные мышцы располагаются только в сердце, служат для перекачивания крови. Работают тоже непрерывно и ритмично.
  • Скелетные мышцы или поперечнополосатые составляют каркас тела. Именно эти мышцы интересны нам, т.к. именно их мы пытаемся накачать. Они отвечают не только за различные движения, но и за поддержание равновесия, определенного положения. Даже в покое, когда человек сидит или лежит, многие из них работают. Усилием воли человек может заставить их сокращаться или расслабляться. Эти волокна активно реагируют на нервные импульсы, с помощью нагрузок можно увеличить их силу и объем. Но непрерывная работа приводит к их утомлению.

Физические тренировки направлены на укрепление скелетных мышц. Но в организме все взаимосвязано.

Крепкий мышечный корсет поддерживает правильную работу внутренних органов, что приводит к улучшению пищеварения. Благодаря этому мышечные волокна получают больше питательных веществ и могут выдерживать еще большие нагрузки.

Так же связаны скелетные мышцы и с работой сердца. Во время тренировки укрепляется сердечная мышца. Это приводит к улучшению кровообращения и обеспечения миоцитов кислородом.

Свойства скелетных мышц

Поперечнополосатые или скелетные мышцы человека имеют самое сложное строение. Именно они составляют часть опорно-двигательного аппарата, на них направлены физические тренировки. Эти мышцы выполняют множество важных функций:

  • поддерживают позу;
  • участвуют в передвижении;
  • в перемещении частей тела;
  • защищают внутренние органы;
  • регулируют дыхание, кровообращение, температуру тела.

Они способны проводить нервные импульсы и под их влиянием сокращаться. Важной также является способность этих волокон к расслаблению и сохранению состояния покоя. Характеризуются они такими свойствами:

  • растяжимость – увеличение длины под действием силы, большинство волокон способно растягиваться на 150%;
  • эластичность – восстановление первоначального вида после прекращения действия силы;
  • сократимость – способность сжиматься, обычно на 30-50% длины;
  • сила – удержание определенного груза

Скелетные мышцы могут функционировать в динамическом режиме, когда происходит их активное сокращение и растяжение, а также в изометрическом режиме. Это статическое напряжение, не приводящее к изменению длины волокон.

Так работают мышцы, поддерживающие вертикальное положение тела и работающие на преодоление силы тяжести.

Особенность скелетных мышц также зависит от типа и строения волокон.

  • Красные или медленные волокна содержат много митохондрий. Расположены глубоко, в основном это отводящие мышцы и разгибатели. Возбуждаются медленно, требуют внешней стимуляции. Скорость проведения нервного импульса – до 8 м/с. Активно используют кислород, окисляют углеводы и жиры, участвуют в теплообмене.
  • Быстрые или белые мышечные волокна расположены поверхностно. Это сгибатели и приводящие. Способны работать при дефиците кислорода. Сокращаются быстро, скорость проведения импульса до 40 м/с. Но то, какие волокна участвуют в движении, зависит не от скорости, а от приложенного усилия.

Считается, что соотношение разных мышечных волокон определяется генетически. Этим можно объяснить природную склонность людей к определенным видам спорта. Но при правильном распределении нагрузки можно заставить мышцы приспособиться и выполнять любую работу.

Классификация мышц тела человека

Классифицируют в анатомии все скелетные мышцы по форме, положению в теле, функциям, направлению волокон и типу взаимодействия друг с другом. По форме различают короткие, длинные, широкие. По расположению – наружные или поверхностные, глубокие, внутренние, а также латеральные и медиальные. Такие виды различаются по направлению волокон:

  • параллельные;
  • косые;
  • поперечные;
  • круговые;
  • одно, -двух и многоперистые;
  • полусухожильные;
  • полуперепончатые.

В этой классификации выделяют прямые, лентовидные, веретенообразные. Это простые мышцы.

Есть также двуглавые, трехглавые и 4-главые мышцы. Они относятся к сложным. В эту группу входят гребенчатые, зубчатые, квадратные, дельтовидные, трапециевидные.

Но наиболее известно разделение всех мышц по их функциям. Группы определяются в зависимости от типа выполняемого движения:

  • сгибатели и разгибатели;
  • отводящие и приводящие;
  • наклоняющие вправо-влево;
  • пронаторы и супинаторы;
  • поднимающие – опускающие.

Есть также несколько видов в зависимости от того, как они взаимодействуют друг с другом.

  • Так мышца, которая берет на себя основную нагрузку, называется агонистом.
  • Все, которые помогают ей совершить это действие, работающие вместе – это синергисты.
  • Те, которые противодействуют движению, работающие в другом направлении – это антагонисты.
  • Есть еще стабилизаторы или фиксаторы. Они нужны, чтобы удерживать суставы в правильном положении во время нагрузки.

Сколько мышц в теле человека

Мышцы человека образуют сложную систему. Они отличаются друг от друга размерами, функциями, расположением. Принято считать, что в теле 640 мышц. Сюда относят гладкие, скелетные и сердечные. Но по некоторым подсчетам их может быть до 850.

Названия мышц

В названии мышц отражается или их внешний вид – широчайшая, прямая, или же расположение – грудино-ключично-сосцевидная.

Многие из них называются по тому, какие функции выполняют – разгибатель пальца.

Некоторые названия сохранились со средних веков, например, портняжная мышца – это та, которая участвует в сгибании бедра, именно в таком положении сидели портные за станком.

Часто в названии отражается также расположение.

По локализации различают несколько групп: мышцы головы, шеи, туловища, верхних конечностей, нижних конечностей. Не все они участвуют в физических нагрузках.

Но нужно знать схему расположения самых известных мышц, которые чаще всего задействованы в тренировках.

Давайте наглядно посмотрим на основные мышцы нашего тела, которые мы больше других стремимся преобразить с помощью тренировок и питания:

  1. Трапециевидная (Trapezius).
  2. Дельтовидная (Deltoid).
  3. Бицепс (Biceps).
  4. Ромбовидная (Rhomboid).
  5. Большая круглая (Teres major).
  6. Трицепс (Triceps).
  7. Лучевой разгибатель запястья (Extensor carpi radialis).
  8. Разгибатель мизинца (Extensor digiti minimi).
  9. Локтевой разгибатель запястья (Extensor carpi ulnaris).
  10. Широчайшая мышца спины (Latisimus dorsi).
  11. Разгибатель пальцев (Extensor digitorum).
  12. Передняя зубчатая мышца (Serratus anterior).
  13. Прямая мышца живота (Rectus abdominis).
  14. Наружная косая мышца живота (External oblique).
  15. Пояснично-грудная фасция (Thoraco-lumbar fascia).
  16. Большая ягодичная мышца (Gluteus maximus).
  17. Длинная приводящая мышца (Adductor longus).
  18. Тонкая мышца бедра (Gracilis).
  19. Латеральная широкая мышца бедра (Vastus lateralis).
  20. Медиальная широкая мышца бедра (Vastus medialis).
  21. Полуперепончатая мышца бедра (Semimembranosus).
  22. Передняя большеберцовая мышца (Tibialis anterior).
  23. Полусухожильная мышца (Semitendinosus).
  24. Длинная малоберцовая мышца (Peroneus longus).
  25. Двуглавая мышца (бицепс) бедра (Biceps femoris).
  26. Икроножная мыщца (Gastrocnemius).
  27. Камбаловидная мышца (Soleus).
  28. Короткий разгибатель большого пальца стопы (Extensor hallucis brevis).
  29. Короткий разгибатель пальцев стопы (Extensor digitorum brevis).
  30. Портняжная мышца (Sartorius).
  31. Гребёнчатая мышца (Pectineus).
  32. Прямая мышца бедра (Rectus femoris).
  33. Напрягатель широкой фасции бедра (Tensor fasciae latae).
  34. Средняя ягодичная мышца (Gluteus medius).
  35. Длинная ладонная мышца (Palmaris longus).
  36. Лучевой разгибатель запястья (Flexor carpi radialis).
  37. Плечелучевая мышца (Brachioradialis).
  38. Большая грудная мышца (Pectoralis major).
  39. Грудино-ключично-сосцевидная мышца (Sternocleidomastoideus).

Функции мышц человека

Каждый спортсмен, который хочет накачать мышцы и изменить рельеф тела, должен знать их анатомию и функции. Нужно понимать, какие упражнения нужно выполнять, как увеличивать рабочие веса в упражнениях. Есть несколько мышц, которые участвуют в тренировках чаще всего.

Шея

Из мышц шеи накачать можно грудино-ключично-сосцевидную. Она отвечает за наклоны головы во все стороны, а также повороты. Ее укрепление важно для тех спортсменов, которые занимаются футболом, боксом, борьбой.

Можно выполнять упражнения с утяжелением.

Туловище

Из туловища особое внимание уделяется животу, спине, грудным мышцам, шее.

  • Большая грудная отвечает за приведение верхних конечностей, подъем вверх, опускание. Нужно выполнять отжимания от пола или брусьев, приведение рук на блоке, жим от груди. Кстати, у меня есть статья про то, как накачать грудь в домашних условиях.
  • Прямая мышца живота – за наклоны туловища вперед. Красивый рельеф можно создать, выполняя скручивания из положения лежа. Советую прочитать мою статью про то, как накачать быстро пресс в домашних условиях.
  • Косые наружные мышцы живота помогают в наклонах вперед, а также выполняют наклоны в стороны. Тренируются во время метания копья, игры в теннис, выполнения боковых наклонов и скручивания.
  • Трапециевидная – с ее помощь выполняется подъем плеч, движения лопатками, а также головой вперед-назад и в стороны. Тренируется у тяжелоатлетов, гимнастов, во время гребли и при жиме вверх. Вот статья про то, как накачать трапецию.
  • Широчайшая – сгибание туловища в стороны, отведение рук назад. Работает при гребле, занятии гимнастикой и тяжелой атлетикой. Тренировать можно с помощью подтягивания на перекладине. Почитайте по ссылке подробно про то, как накачать спину.

Верхних конечностей

Мышцы рук стараются накачать в основном мужчины, но и женщинам тоже будет полезно узнать следующую информацию. Для создания красивого рельефа потребуется работа над такими видами мышц верхних конечностей:

  • Двуглавая (бицепс) – сгибание в локтях, разворот кисти. Тренируются при любых упражнениях, включающих сгибания рук, а также во время гребли. Вот статья про то, как накачать руки.
  • Клювовидно-плечевая отвечает за подъем рук. Можно тренировать во время занятия боулингом, армрестлингом, метанием копья.
  • Плечевая – приведение предплечья. Чтобы ее натренировать, нужно заниматься греблей, лазать по канату, выполнять сгибание рук с грузом. Вот подробная статья про то, как накачать предплечья.
  • Трехглавая (трицепс) отвечает за отведение верхних конечностей назад. Нужно выполнять стойку на руках, упражнения, связанные с разгибанием рук.
  • Дельтовидные отвечают за подъем верхних конечностей. Тренируются при занятии гимнастикой, тяжелой атлетикой, метанием. Можно также выполнять жимы и подъем веса. Почитайте статью про то, как накачать дельты.

Нижних конечностей

Мышцы ног натренировать легче, есть много видов спорта, которые дают нагрузку на нижние конечности.

  • Четырехглавая отвечает за ротацию и супинацию, выпрямление в тазобедренном суставе. Полезны все виды приседаний, жимы, разгибание ног с утяжелением. Тренируется также при занятии велоспортом, футболом, легкой атлетикой. Вот статья про то, как качать ноги.
  • Бицепс бедра – за сгибание ног. Чтобы накачать, нужно выполнять любые упражнения, связанные с этим движением. Самым эффективным упражнением для бицепса бедра является мёртвая тяга со штангой.
  • Большая ягодичная выполняет разворот бедра. Полезно плавание, лыжи, велоспорт. Прочитайте статью про то, как быстро накачать ягодицы.
  • Икроножная участвует в работе коленного сустава, развороте стопы. Полезны полуприседы, прыжки, бег, велосипед.
  • Камбаловидная разгибает стопу. Тренируется с помощью подъемов на носок.
  • Большеберцовая и малоберцовая участвуют в поворотах и других движениях стопы. Нужно выполнять подъем на носки.

Мышцы человека. Выводы

Сегодня мы с вами подробно поговорили про мышцы человека. Выводы, в общем-то достаточно простые.

Если знать строение и функции мышц, можно научиться грамотно выбирать упражнения и добиться крутого тела достаточно быстро.

Правильное распределение нагрузки поможет избежать утомления. Чтобы не наделать ошибок начните с моего раздела на блоге для новичков. Там я всё рассказал пошагово и подробно.

Регулярная тренировка мышц увеличивает их выносливость, силу, обеспечивает красивый рельеф тела.

Обязательно занимайтесь спортом, любите своё тело и постоянно совершенствуйтесь, тогда ваш организм отплатит вам крепким здоровьем и красивой формой.

Всего вам доброго!

P.S. Подписывайтесь на обновления блога. Дальше будет только круче.

С уважением и наилучшими пожеланиями, Никита Волков!

Поделись статьей с друзьями. Возможно, это им понравится Загрузка...

Скелетные мышцы - особенности строения, классификация и функции в организме

Особенности строения

Скелетные мышцы состоят из множества мышечных волокон или симпластов, которые объединяются в пучки. Из них составляются двигательные единицы, объединённые общей интеграцией с нервной системой. В одной из них может содержаться от 3—5 (глаза) до 1,5—2,5 тысяч (камбаловидная мышца) волокон, объединённых одинаковыми свойствами и управляемыми общим моторным нейроном.

Симпласты представляют собой огромные многоядерные клетки, имеющие форму вытянутой нити с заострёнными краями. Их длина достигает до 14 см при диаметре всего в несколько сотых долей миллиметра. Клетки защищены внешней оболочкой под названием «сарколемма» и объединены друг с другом соединительной тканью. Эта рыхлая субстанция не только поддерживает целостность структуры, но и содержит сосуды, лимфатические узлы и нервные волокна, обеспечивающие связь с остальным организмом.

Моторные единицы образуют пучки, а затем объединяются в целые мышцы, окружённые плотным мешочком соединительной ткани. Концами они крепятся к сухожилиям, соединённым со скелетом. Нервные импульсы, проходящие сквозь мышечное волокно, приводят в движение и кости. Мотонейроны проходят весь путь к ним из спинного мозга через разветвлённую сеть аксонов. Важно отметить, что они имеют возможность активировать не всю мышцу, а отдельную группу волокон. Это позволяет регулировать силу и скорость сокращений, в зависимости от приложенных усилий и нагрузки.

Механизм сокращения

Способность сокращаться обеспечивает работу скелетных мышц и их регуляцию, позволяя им выполнять свою функцию в организме. Процесс происходит за счёт работы специальных сократительных блоков, содержащихся в волокне. Он происходит следующим образом:

  • Мозг посылает соответствующий импульс для начала сокращения. Через нервную систему он доходит до двигательного нейрона, соединённого с мышечным пучком.
  • Происходит иннервация нейрона из синоптического пузырька. В результате выделяется особое вещество — нейромедиатор. Это биологически активная субстанция, способная передавать электрохимические импульсы от нервных клеток к тканям.
  • Нейромедиатор активирует рецепты на внешней оболочке мышечного волокна. В результате открывается натриевый канал, мембрана деполяризуется и возникает потенциал действия.
  • Стимулируется выработка ионов кальция, которые вступают в реакцию с особым белком тропонином, стимулируя его сокращение.
  • Вещество оттягивает цепи тропомиозина, открывая доступ актина к миозину и давая им возможность соединиться. Из-за деятельности этих элементов происходят сократительные движения волокон.

Множество мышечных пучков двигаются одновременно. В зависимости от характера этих движений, части тела перемещаются по-разному. Мышцы-синергисты работают в одном направлении, задавая скорость, силу и направления движения. Мускулы-антагонисты действуют противоположно друг другу, отвечая за появление напряжения и противодействия, создавая грацию и направленность. По типу самих сокращений мышцы делятся на три типа:

  • Изотонические — укорачиваются без изменений напряжения волокон.
  • Изометрические — сокращаются, не меняя длины.
  • Ауксотонические — меняют длину и напряжение при работе.

Взаимодействие всех видов сокращений обеспечивает разнообразие движений, которые совершает человек. Он может контролировать не только их направленность, но и скорость, плавность, направленную силу, напряжение.

Классификация и виды

В анатомии и физиологии различают несколько основных групп скелетных мышц. Они отличаются расположением и выполняемыми функциями. Главные из них:

  • Грудные. Отвечают за движения верхней части туловища, плечей и рук. Изменяют положение рёбер при дыхании.
  • Спинные. Часть двигательной системы верхних конечностей. Позволяют выгибать тело назад.
  • Мышцы живота. Дают возможность наклоняться. Частично регулируют работу желудочно-кишечного тракта и кровеносной системы. Изменяют расположение грудной клетки во время дыхания.
  • Мимические. Входят в состав мускулатуры головы. Обеспечивают движение составляющих лица, отвечая за улыбку, нахмуривание, создание различных выражений и гримас. Необходимы при общении и выражении чувств.
  • Жевательные. Отвечают за движения верхней и нижней челюсти, позволяя человеку открывать и закрывать рот. Помимо основной функции (жевания пищи), это необходимо для формирования членораздельной речи.
  • Мышцы внутренних органов головы. Отвечают за движения глаз, языка, среднего уха, нёба.
  • Поверхностные мышцы шейного отдела. Помогают в регуляции наклона головы, осуществлении вращательных движений шеи.
  • Мускулы среднего отдела шеи. Расположены на нижней стенке ротовой полости. Нужны для движений гортани, подъязычных тканей, нижней челюсти.
  • Глубокие мышцы шеи. Отвечают за наклоны и повороты головы совместно с поверхностной мускулатурой. Кроме того, нужны для регуляции движений первого и второго рёбер при дыхании и нагрузках.
  • Мускулатура верхних конечностей. Включают плечевой пояс и непосредственно ткани рук. Отвечают за сгибание-разгибание локтей, позволяют двигать запястьем, кистью и пальцами.
  • Мышцы нижних конечностей. Включают мускулатуру таза и свободные ткани ног и стоп. Играют важную роль при ходьбе, изменении положения тела в пространстве. Участвуют также в сгибании позвоночного столба.

Помимо расположения, мышцы также классифицируют по функциям — сгибающие, разгибающие, приводящие, отводящие, вращательные и так далее. В таблице П. Ф. Лесгафта они делятся также на сильные и ловкие. Первые крепятся к большой поверхности короткими волокнами, обладают небольшим физиологическим поперечником, медленно утомляются. Вторые отличаются большой длиной при маленькой площади крепления, действуют с сильным напряжением и устают быстро.

Отличительные свойства

Все виды мышц обладают несколькими функциональными особенностями, обеспечивающими их нормальную работу. Некоторые из них:

  • Возбудимость. Защитная мембрана мышечных клеток воспринимает нервный импульс. Мускулы отвечают на него возбуждением, производя определённую биоэлектрическую активность.
  • Проводимость. Мышечные клетки могут создавать и проводить местные токи и потенциалы действия. Они распространяются вдоль волокна и вглубь мембранных трубок со скоростью около 3—5 м/с.
  • Сократимость. Волокна увеличивают или уменьшаю свою длину и напряжение, в зависимости от состояния мембраны. Особенность обусловлена взаимодействием специализированных белков на молекулярном уровне.
  • Вязкоэластические свойства. Нужны для расслабления и отдыха скелетной мускулатуры.
  • Растяжимость и эластичность. Мышцы увеличиваются в длину под действием достаточной растягивающей или деформирующей силы, но быстро возвращаются к первоначальной форме после его прекращения или приостановки.
  • Сила и способность совершать работу. Зависит от длины и толщины волокон, числа и синхронности взаимодействия двигательных единиц. Увеличивается с повышением массы груза, но только до определённого предела.
  • Утомляемость. Мускулы не могут работать постоянно — им необходимы перерывы, иначе работоспособность снижается. Это обусловлено ограниченностью энергетических запасов — АТФ, гликогена, глюкозы. Играет роль также накопление вредных метаболитов. Помимо самой мышцы, может утомляться синапс — механизм передачи импульсов от нерва к мускулатуре. Это называется ложной мышечной усталостью.

К отличительным чертам мышц относится также способность поддерживать тонус — небольшое напряжение даже при отсутствии нагрузок. Он непроизвольно увеличивается при нагрузках, стрессах, сильных эмоциях. Выраженность тонуса зависит от общего состояния мускулатуры — наполненности футляров, растяжения, уровня водно-солевого баланса, обогащённости тканей кровью и лимфой.

Функции в организме

Скелетные мышцы — одна из основ тела человека, составляющая от 40 до 50% его массы. Они формируются у ребёнка ещё на стадии внутриутробного развития и растут до окончания полового созревания, после чего могут увеличиваться или уменьшаться на протяжении всей жизни, в зависимости от физических нагрузок, питания, образа жизни, состояния здоровья и других факторов. Значение волокон в организме:

  • Изменение положения человека в пространстве.
  • Перемещение различных частей тела относительно друг друга.
  • Поддержание организма в одной позе.
  • Обеспечение выполнения жизненно важных функций, таких как глотание и дыхание.
  • Выработка энергии при сокращении — она расходуется на терморегуляцию и поддержание постоянной температуры.
  • Сохранение запасов воды, солей, белков и других необходимых веществ в тканях.
  • Формирование мимики и голоса, необходимых для общения.

Дополнительная функция скелетных мышц — защита. Вместе с кожей и жировой тканью они прикрывают кости, органы и другие жизненно важные структуры организма, оберегая их от различных механических воздействий — ударов, падений, столкновений, порезов.

Здоровье мышц

Поддержание здоровья скелетной мускулатуры необходимо для улучшения общего самочувствия и физической формы. Большинство нарушений в работе мышц обусловлено заболеваниями связанных отделов нервной системы, патологиями обмена веществ, а также травмами и несчастными случаями. Распространённые болезни:

  • Мышечные спазмы или судороги. Возникают по таким причинам, как сбои в электролитном балансе внутриклеточной жидкости симпластов и повышение или понижение осмотического давления в ней. Кроме того, являются симптомом множества заболеваний и патологических состояний — от кровопотери и авитаминоза до столбняка или эпилепсии.
  • Гипокальциемический кризис или тетания. Болезнь, возникающая от серьёзного (падение до 40% от нормального числа или меньше) дефицита положительных ионов кальция во внеклеточном пространстве. Проявляются непроизвольными и длинными сокращениями скелетной мускулатуры.
  • Мышечная дистрофия. Приводит к стойкой и продолжительной дегенерации тканей. Поражает не только опорно-двигательный аппарат, но и мускулатуру внутренних органов, отчего может привести к смерти от дыхательной или сердечной недостаточности при отсутствии немедленного квалифицированного лечения.
  • Миастения. Аутоиммунное заболевание, при котором организм воспринимает свои клетки как чужие и начинает уничтожать их. Характеризуется образованием антител к никотиновому ацетилхолиновому рецептору, который отвечает за передачу нервного импульса от спинного мозга к мышце через синапс.

Чтобы избежать заболеваний и патологий скелетной мускулатуры, необходимо поддерживать её здоровье при помощи правильного питания и регулярных тренировок с умеренными физическими нагрузками. В качестве дополнительных мер рекомендуется массаж, посещение бань и саун, приём витаминов и микроэлементов при их дефиците. Эти процедуры помогут обогатить ткани кислородом, улучшат тонус, повысят эластичность, ускорят регенерацию, помогут снять напряжение и расслабиться.

Скелетные мышцы — важный элемент опорно-двигательного аппарата. Они отвечают не только за поддержание позы и перемещение тела в пространстве, но и за терморегуляцию, хранение полезных веществ и защиту внутренних органов. Главная особенность этих мускулов — их способность сокращаться в ответ на нервные импульсы.


Система мышц человека Анатомия, строение и функции

[Начало сверху] …

Типы мышечных тканей

Есть три вида мышечной ткани: висцеральные, мышцы сердца и скелета.
Висцеральные — находятся внутри органов, таких как желудок, кишечник и кровеносные сосуды. Самые слабые из всех мышц внутренних органов, служат для перемещения веществ. Висцеральные мышцы не могут непосредственно контролироваться сознанием. Термин «гладкая» используется для висцеральной мышцы, так как она имеет гладкую структуру, однородный вид (если смотреть под микроскопом). Её внешний вид резко контрастирует с сердечной и скелетными мышцами.
Сердечная мышца расположена только в сердце, она отвечает за перекачивание крови по всему телу. Сердечная мышца не контролируется сознательно. В то время как гормоны и сигналы мозга могут регулировать скорость сжатия сердечной мышцы, стимулируя сокращение. Естественный стимулятор биения сердца — сердечная мышечная ткань, которая заставляет другие клетки сокращаться.
Клетки сердечной мышечной ткани являются поперечно — полосатыми, то есть, они представляют из себя светлые и темные полосы, если смотреть под световым микроскопом. Расположение белковых волокон внутри клеток вызывает эти светлые и темные полосы. Мышечная клетка очень сильна, в отличие от висцеральной.
Клетки сердечной мышцы являются разветвленными или X Y формы, клетки плотно соединены между собой специальными переходами, называемыми интеркалированными дисками. Интеркалированные диски состоят из пальцевидной проекции двух соседних ячеек, которые сцепляются и обеспечивают прочную связь между клетками. Разветвленная структура и интеркалированные диски позволяют мышечным клеткам противостоять высокому давлению крови и напряжению при перекачке крови в течение всей жизни. Эти функции также способствуют быстрому распространению электрохимических сигналов от клетки к клетке так, что сердце может биться как единое целое.


Скелетные мышцы являются единственной мышечной тканью в организме человека, которая управляется сознательно. Каждое физическое действие, которое человек сознательно выполняет (например: разговор, ходьба или письмо) требует движения скелетных мышц. Скелетные могут сжиматься, чтобы перемещать части тела ближе к кости, к которой мышца прикрепляется. Большинство скелетных мышц прикреплены к двум костям через суставы, так что они служат для перемещения частей этих костей ближе друг к другу.
Каркасные (скелетные) мышечные клетки образуются, когда множество мелких клеток — предшественников скомковываются вместе, чтобы сформировать длинные, прямые, многоядерные волокна. Исчерчены каркасные мышцы так же, как и сердечная, поэтому они очень сильны. Скелетная мышца получает свое название от того, что она всегда подключаются к скелету, по крайней мере, в одном месте.

Анатомия скелетных мышц

Большинство скелетных прикреплены к двум костям через сухожилия. Сухожилия — жесткие полосы плотной регулярной соединительной ткани; сильные коллагеновые волокна прочно прикрепляют мышцы к костям. Сухожилия находятся в крайнем напряжении, когда они тянутся, так что они очень сильно вплетены в покрытия мышц и костей.

Мышцы двигаются за счет сокращения их длины, натягивания сухожилий и перемещения костей ближе друг к другу. Одна из костей втягивается по направлению к другой кости, которая остается неподвижной. Место на движущейся кости, которая соединяется с мышцей через сухожилия называется вставкой. Мышцы живота находятся между сухожилиями, что позволяет делать фактическое сокращение.

Названия скелетных мышц

Их названия происходят на основе множества различных факторов, в том числе местонахождения, происхождения и вставки, количества, формы, размера, направления и функции.

Местоположение

Много мышц получают имена от анатомической области. Брюшная и прямая, поперечная брюшная, например, находятся в брюшной полости. Другие, как и передняя большеберцовая, названы из-за части кости (передняя часть голени), к которой они присоединены. Другие мышцы используют симбиоз двух видов названий, как плечелучевая, которая названа в честь области нахождения.

Происхождение

Некоторые мышцы названы на основе их подключения к стационарной и движущейся кости. Эти мышцы становится очень легко определить, когда вы знаете имена костей, к которым они присоединены.


Некоторые подключаются к более чем 1 кости или более чем в одном месте и имеют более чем один источник. Мышца сразу с двумя происхождения называется бицепсом, а с тремя происхождения — трицепсной. И, наконец, мышца с четырьмя происхождениями называется четырехглавой.

Форма, размер и направление

Также важно классифицировать мышцы по форме. Например, дельтовидные имеют дельта — или треугольную форму. Зубчатые имеют зубчатую или пилообразный форму. Ромбовидные — обладают формой ромба.
Размер может быть использован, чтобы различать два типа мышц, найденных в одном и том же регионе. Область ягодичной части содержит три мышцы, дифференцированные по размеру: ягодичная большая, ягодичная средняя и малая. И, наконец, направления мышечных волокон могут быть использованы для их идентификации. В брюшине существует несколько широких и плоских. Мышцы с волокнами, расположенными вверх и вниз — являются прямыми, работающие в поперечном направлении (слева направо) — поперечные, а работающие под углом, являются косыми.

Функции мышечной ткани человека

Мышцы иногда классифицируют по типу функции, которую они выполняют. Большинство мышц предплечья именуются в зависимости от их функций, потому что они расположены в том же регионе и имеют одинаковые формы и размеры. Например, сгибатели предплечья сгибают запястья и пальцы.
Супинатор — это мышца, которая поднимает запястье ладонью вверх. В ноге есть такие, которые называются аддукторами, чья роль заключается в стягивании ног.

Инициативные группы в скелетных мышцах

Чаще всего они работают в группах, чтобы произвести точные движения. Мышца, которая производит какое — либо конкретное движение тела известна как агонист или тягач. Агонисты всегда парны с антагонистами, которые производят противоположный эффект на одних и тех же костях. Например, двуглавая мышцы плеча сгибает руку в локте. В качестве антагониста для этого движения — трехглавая плеча — расширяет руку в локте. Когда трицепсы расширяют руку, бицепс будет считаться антагонистом.


В дополнение к агонист / антагонист классификации, другие мышцы работают, чтобы поддержать движение агониста.
Синергистами являются мышцы, которые помогают стабилизировать движение и уменьшить лишние движения. Они обычно находятся в областях вблизи агониста и часто подключаются к той же кости. Если вы поднимаете что-то тяжелое, они помогают держать тело в вертикальном положении неподвижно, так что вы поддерживаете свой баланс во время подъема.

Гистология скелетной мускулатуры

Скелетные мышечные волокна значительно отличаются от других тканей организма из — за их узкоспециализированных функций. Многие из органелл, которые составляют мышечные волокна являются уникальными для данного типа клетки.

Сарколемма является клеточной мембраной мышечных волокон. Сарколемма выступает в качестве проводника для электрохимических сигналов, которые стимулируют мышечные клетки. Подключенные к сарколемме поперечные трубочки (Т-трубочки) помогают переносить электрохимические сигналы в середину мышечного волокна. Саркоплазматический ретикулум служит в качестве хранилища для ионов кальция (Са2 +), которые имеют жизненно важное значение для сокращения мышц.
Митохондрии, движущая сила клетки, в изобилии находятся в мышечных клетках, чтобы обеспечивать энергией в виде АТФ активные мышцы. Большая часть структуры мышечного волокна выполнена из миофибрилл, которые являются сократительными структурами клетки. Миофибриллы составлены из многих белковых волокон, расположенных в повторяющихся субъединицах, называемых саркомерами. Саркомера является функциональной единицей мышечных волокон.

Структура саркомера

Саркомеры изготавливаются из двух типов белковых волокон: толстых нитей и тонких нитей.

Толстые нити состоят из множества соединенных звеньев белка миозина. Миозин является белком, который вызывает мышцы сокращаться.
Тонкие нити состоят из трех белков:


Актин.
Актин образует спиральную структуру, которая составляет большую часть массы тонкой нити.

Тропомиозин.
Тропомиозин — длинный волокнистый белок, который оборачивается вокруг актина и охватывает миозин, связывая с актином.

Тропонин.
Белок, связывающийся очень плотно с тропомиозином во время мышечного сокращения.

Функции мышечной ткани

Основной функцией мышечной системы является движение. Мышцы являются единственной тканью в организме, что имеет возможность перемещать другие части тела.
Связанная с функцией движения является вторая функция мускульной системы: поддержание позы и положения тела. Мышцы зачастую держат тело неподвижно или в определенном положении, а не вызывают движение. Мышцы, отвечающие за положение тела имеют наивысшую выносливость — они выполняют свои функции в течение всего дня, не становясь усталыми.
Еще одна функция, связанная с движением является движение веществ внутри тела. Сердечные и висцеральные мышцы, в первую очередь, ответственны за транспортировку веществ, таких как кровь или питательные вещества из одной части тела в другую.

Последняя функция мышечной ткани является генерация тепла . В результате высокой скорости метаболизма сокращающейся мышцы, наша мышечная система производит большое количество отработанного тепла. Многие небольшие сокращения мышц в организме производят наше естественное тепло тела. Когда мы прилагаем усилия больше, чем обычно, дополнительные сокращения мышц приводят к повышению температуры тела и в конечном итоге к потливости.

Скелетная мускулатура в роли рычага

Мышцы скелетной системы работают вместе с костями и суставами образуя рычажные системы. Они действуют как передатчики усилия, а кость выступает в качестве опоры; при движении мышцы и кости, объект перемещается.

Есть три класса рычагов, но подавляющее большинство рычагов в теле — рычаги третьего класса. Рычаг третьего класса представляет собой систему, в которой точка опоры находится на конце рычага. В организме, рычаги третьего класса, служат для увеличения расстояния для сокращения мышцы.

Двигательные единицы мышц

Нервные клетки, называемые моторными нейронами, управляют скелетными мышцами. Каждый двигательный нейрон контролирует несколько мышечных клеток в группе. Когда двигательный нейрон получает сигнал от мозга, он стимулирует все клетки мышц в то же время.
Размер двигательных единиц изменяется по всему телу, в зависимости от функции. Мышцы, которые выполняют тонкие движения — как мышцы глаз или пальцев, имеют очень много нейронов для повышения точности контроля мозга над этими структурами. Мышцы, которые требуют много сил, чтобы выполнять свои функции, как ноги или руки — имеют много мышечных клеток и меньше нейронов в каждом блоке.

Когда положительные ионы достигают саркоплазматического ретикулума, ионы Са2 + высвобождаются и протекают в миофибриллы. Ионы Са2 + связываются с тропонином, что вызывает молекулу тропонина изменять форму и переместить близлежащие молекулы тропомиозина. Тропомиозин отодвигается от миозина и связывается с молекулой актина, что позволяет актину и миозину связываться друг с другом.

Типы мышечных сокращений

Силой сжатия мышц можно управлять двумя факторами: количеством двигательных единиц (нейронов), участвующих в сокращении и количеством импульсов от нервной системы. Один нервный импульс моторного нейрона вызовет краткое напряжение группы мышц, а затем заставит расслабиться. Если двигательный нейрон обеспечивает несколько сигналов в течение короткого периода времени, то сила и продолжительность сжатия увеличивается. Если двигательный нейрон обеспечивает много нервных импульсов в быстрой последовательности, мышца может войти в состояние полного и прочного сокращения. Мышца останется в сжатом положении, пока скорость сигнала нерва не замедлится или до тех пор, пока мышца станет слишком усталой, чтобы поддерживать напряжение.

Не все сокращения мышц производят движение. Изометрическое сокращение — легкие схватки, которые увеличивают напряжение в мышцах, не оказывая достаточной силы, чтобы переместить часть тела. Когда тело напряжено из-за стресса, мышцы выполняют изометрическое сокращение. Поддержание позы является также результатом изометрических сокращений. Сужения мышц, что действительно производит движение является изотоническими сокращениями. Изотонические сокращения необходимы для наращивания мышечной массы за счет подъема веса.


Мышечный тонус является естественным состоянием, в котором скелетные мышцы остаются во всё время. Мышечный тонус обеспечивает легкое натяжение мышц, чтобы предотвратить повреждение мышц и суставов от резких движений, а также помогает поддерживать осанку тела. Все не повреждённые мышцы поддерживают некоторое количество мышечного тонуса во всё время.

Функциональные типы скелетных мышечных волокон

Cкелетные мышечные волокона, можно разделить на два типа в зависимости от того, как они производят и используют энергию:

I тип — волокна с очень медленным и осторожным сокращением. Они очень устойчивы к усталости, потому что используют аэробное дыхание для производства энергии из сахара. Находятся I типа волокона в мышцах по всему телу для выносливости и осанки, рядом с позвоночником и в регионах шеи.

Волокна типа II разбиты на две подгруппы: II типа А и типа II B.
Тип II волокна А быстрее и сильнее, чем I типа волокона, но не имеют столько же выносливости. Типа II A волокна находятся по всему телу, но особенно в ногах,где они работают, чтобы поддерживать ваше тело на протяжении долгого времени для ходьбы и стояния.

Тип II B — волокна еще быстрее и сильнее, чем II типа А, но еще меньше выносливые. Тип II B волокна немного светлее, чем тип I и тип II А из-за их отсутствия миоглобина — кислородного пигмента. Находятся волокна типа II B по всему телу, но особенно в верхней части, где они дают скорость и силу рукам и груди за счет выносливости.

Мышечный метаболизм и усталость

Мышцы получают энергию из различных источников, в зависимости от ситуации, в которой мышца работает. Мышцы способны использовать аэробное дыхание, когда необходимо произвести от низкого до умеренного уровня силы упражнения. Аэробное дыхание требует кислорода, чтобы произвести около 36-38 молекул АТФ из молекулы глюкозы. Аэробные дыхания является очень эффективным и может продолжаться до тех пор, пока мышца получает достаточное количество кислорода и глюкозы. Когда мы используем мышцы, чтобы произвести высокий уровень силы, они становятся настолько плотными, что находящийся кислород в крови не может войти в мышцу. Это условие приводит к тому, что мышцы используют для выработки энергии брожение молочной кислоты (форма анаэробного дыхания). Анаэробное дыхание менее эффективно аэробного дыхания — только 2 АТФ производится из каждой молекулы глюкозы.
Для того, чтобы мышцы работали в течение более длительного периода времени, мышечные волокна содержат несколько важных энергетических молекул. Миоглобин, красный пигмент содержащийся в мышцах, содержит железо и сохраняет кислород в манере, подобной гемоглобину крови. Кислород из миоглобина позволяет мышцам продолжать аэробное дыхание в отсутствии кислорода. Другой химикат, который помогает мышцам работать — креатинфосфат. Мышцы используют энергию в виде АТФ, происходит превращение АТФ в АДФ, чтобы выпустить свою энергию. Креатинфосфат жертвует свою фосфатную группу АДФ, чтобы включить её в АТФ, с тем, чтобы обеспечить дополнительную энергию для мышц. Наконец, мышечные волокна содержат энергию аккумулирующих гликогенов, больших макромолекул, изготовленных из множества связанной между собой глюкозы. Активные мышцы отщепляют глюкозу от молекул гликогена, чтобы обеспечить внутренний запас топлива.

Мышечная усталость

Когда мышцы исчерпали энергию во время аэробного или анаэробного дыхания, то быстро утомляются и теряют способность сокращаться. Это состояние известно как мышечная усталость. Утомление мышц не говорит о содержании очень малого количества или отсутствия кислорода, глюкозы или АТФ, но вместо этого имеет много продуктов — отходов дыхания, таких как молочная кислота и АДФ. Тело должно принимать дополнительное количество кислорода после физической нагрузки, чтобы заменить кислород, который находился в миоглобине мышечных волокон, а также для питания аэробного дыхания, которое обеспечивает поставки энергии внутри клетки. Восстановление потребления кислорода (кислородное голодание) — это восприятие дополнительного кислорода, который организм должен принять, чтобы восстановить мышечные клетки, их привести в состояние покоя. Это объясняет, почему появляется одышка в течение нескольких минут после напряженной деятельности — ваше тело пытается восстановить себя в нормальное состояние.

простым языком. От чего зависит сила человека

Мышечная система — это основа основ физического здоровья. Анатомия мышц человека представлена более 600 различными волокнами, которые составляют до 47 % от общей массы организма. От их функциональности зависит не только передвижение тела в пространстве, но и многие физиологические процессы: глотание, кровообращение, жевание, обмен веществ, сердечные сокращения и т. д. Мышечный каркас формирует строение тела, обеспечивает положение относительно окружающих предметов, позволяет человеку принимать участие в различных физических действиях и выполнять большую часть работ. Поэтому подробное изучение строения мышц, их классификации и функциональности считается одним из ключевых разделов анатомии.

Детальное строение мышечной ткани

Каждая отдельно взятая мышца — это целостный орган, состоящий из множества маленьких мышечных волокон — миоцитов, а также плотной и рыхлой соединительной ткани в различном соотношении. В ней выделяют 2 функциональные зоны: брюшко и сухожилие. Брюшко выполняет в основном сократительную функцию, поэтому представлено комбинацией соединительнотканного вещества и миоцитов, способных к сокращению и возбуждению. Сухожилие же считается пассивной частью мышцы. Оно располагается по краям и состоит из плотной соединительной ткани, благодаря которой осуществляется прикрепление волокон к костям и суставам.

Иннервация и кровоснабжение каждой мышцы осуществляется за счёт тончайших капилляров и нервных волокон, расположенных между пучками из 10–50 миоцитов. Благодаря этому мышечная ткань получает необходимое питание, снабжается кислородом и полезными веществами, а также может сокращаться в ответ на переданный нервной тканью импульс.

Каждое мышечное волокно выглядит как длинная многоядерная клетка, длина которой в разы превышает поперечное сечение. Оболочка, покрывающая миоцит, объединяет различное количество мелких миофибрилл, в зависимости от числа которых, выделяют белые и красные мышцы. В белых миоцитах число миофибрилл выше, поэтому они быстрее реагируют на импульс и активнее сокращаются. Красные волокна относятся к группе медленных, поскольку в них количество миофибрилл меньше.

Каждая миофибрилла состоит из ряда веществ, от которых зависят функциональные особенности и свойства мышц:

  • Актин — это аминокислотная белковая структура, способная к сокращению.
  • Миозин — главная составляющая миофибрилл, сформированная полипептидными цепочками из аминокислот.
  • Актиномиозин — комплекс белковых молекул актина и миозина.

Основную часть миоцитов составляют белки, вода и вспомогательные компоненты: соли, гликоген и др. Причём большую часть составляет именно вода — её процентное соотношение колеблется в диапазоне 70–80 %. Несмотря на это, каждое отдельно взятое мышечное волокно крайне сильное и устойчивое, и эта сила увеличивается в зависимости от количества миоцитов, объединённых в мышцу.

Анатомия мышц: классификация и функции

Огромное количество мышц в анатомии классифицируют по разным критериям, включающим строение, физиологические особенности, форму, размер, расположение и другие показатели. Рассмотрим каждую группу, чтобы понять, как устроена мышечная ткань человека:

  1. Гладкие мышечные волокна являются структурной единицей стенок внутренних органов, кровеносных капилляров и сосудов. Они сокращаются и расслабляются вне зависимости от импульсов, посланных сознанием человека. Работа гладких мышц отличается последовательностью, размеренностью и непрерывностью.
  2. Скелетные мышцы — каркас человеческого тела. Они отвечают за физическую активность, поддержание организма в определённом положении и двигательные возможности человека. Деятельность скелетной мускулатуры контролируется мозгом. Миоциты этой группы быстро сокращаются и расслабляются, активно реагируют на тренировки, но при этом склонны к утомлению.
  3. Сердечная мышца — отдельный вид миоцитов, объединивший часть функциональных особенностей гладких и скелетных волокон. С одной стороны, её активность непрерывна и не зависит от нервных импульсов, посланных сознанием, а с другой, сокращения осуществляются быстро и интенсивно.

Также мышцы подразделяются на топографические группы, исходя из их местоположения. В организме выделяют мышцы нижних конечностей (стопы, бедра и голени), верхних конечностей (кисти, плеча и предплечья), а также головы, шеи, груди, спины и живота. Каждая из этих групп делится на глубокую и поверхностную, наружную и внутреннюю.

В зависимости от количества суставов, охваченных мышцей, они делятся на односуставные, двусуставные и многосуставные. Чем больше сочленений задействовано, тем выше функционал конкретной мышцы.

Кроме того, мышцы классифицируются по форме и строению. К группе простых относятся веретенообразные, длинные, прямые, короткие и широкие волокна. Многоглавые мышцы — сложные. Они представлены бицепсом, состоящим из 2 головок, трицепсом — из 3 головок и квадрицепсом — из 4 головок. Кроме того, сложными считаются многосухожильные и двубрюшные группы миоцитов. Они бывают квадратными, дельтовидными, пирамидальными, зубчатыми, ромбовидными, камбаловидными, круглыми или треугольными.

В зависимости от функциональных особенностей выделяют:

  • сгибатели,
  • разгибатели,
  • пронаторы (вращатели по направлению кнутри),
  • супинаторы (вращатели к наружной стороне),
  • мышцы, отвечающие за отведение и приведение, поднятие и опускание и т. д.

Основная масса мышц работает парно, выполняя общую или противоположную функцию. Мышца-агонист выполняет определённое действие (например, сгибание), а антагонист — прямо противоположное (то есть разгибание). Столь сложный многоступенчатый комплекс обеспечивает слаженные и плавные движения человеческого тела.

Физиология мышц человека

К основным свойствам мышечной ткани, обеспечивающим полноценную функциональность структур, относятся:

  • Сократимость — способность к сокращению.
  • Возбудимость — реакция на нервный импульс.
  • Эластичность — изменение длины и диаметра волокон в зависимости от внешнего и внутреннего воздействия.

Сокращение мышц регулируется посредством деятельности нервной системы. Каждая мышца содержит множество нервных окончаний, которые можно условно разделить на 2 разновидности — рецепторы и аффекторы. Чувствительные рецепторы воспринимают скорость и степень растяжения и сокращения, силу воздействия и движения миоцитов. Они могут располагаться свободно, разветвляясь в толще мышцы, или несвободно, переплетаясь в веретенообразный комплекс. Информация о состоянии и положении мышечного волокна из рецепторов поступает в ЦНС, откуда передаётся обратно эффекторам, вызывая их возбуждение и, как следствие, реакцию на полученный импульс.

Сокращение миоцитов осуществляется за счёт проникновения нитей актина между цепочками миозина. При этом общая длина актиновых и миозиновых волокон не изменяется — сокращение наступает из-за изменения длины актиномиозинового комплекса. Такой механизм называется скользящим и сопровождается расходом энергетического запаса организма.

Также в мышцах содержатся нервные волокна, регулирующие процесс обмена веществ и состояние миоцитов в покое. Благодаря этому осуществляется регулировка работы мышечной ткани, предупреждается переутомление и нефизиологичное перерастяжение или сокращение. Такой механизм позволяет адаптировать работу мышц к окружающей среде и обеспечивать полноценную функциональность организма.

Заключение

Анатомия мышц, их количество и соотношение является физиологической неизменной, зависящей от наследственности и особенностей организма. Тем не менее, грамотно приложенная физическая нагрузка, регулярные тренировки и здоровый образ жизни могут привести к развитию мышечных волокон, более высокой выносливости, силе и устойчивости. Не стоит полагать, что от этого зависит лишь состояние скелетной мускулатуры и рельеф тела, — правильно составленный комплекс занятий улучшает работу ещё и гладких и сердечных миоцитов. Благодаря этому можно запустить круговорот «обратной связи»: развитая с помощью регулярных тренировок сердечная мышца лучше перекачивает кровь по организму, поэтому все органы, включая и скелетные мышцы, получают больше питания и кислорода, необходимого для преодоления нагрузок. А физически развитые скелетные и гладкие мышцы, в свою очередь, лучше удерживают внутренние органы, обеспечивая их полноценную работу.

Зная основы анатомии мышц человека, вы сможете грамотно построить тренировочный процесс, привнести в свою жизнь основы физической активности и вместе с тем улучшить состояние организма в целом.

Строение, характеристики и группы скелетных мышц

На скелетной основе человеческого организма крепятся мышцы: большие и малые, главные и второстепенные. Без хорошо развитого, здорового мышечного комплекса человек будет лишен возможности двигаться, потому что именно мышцы отвечают даже за малейшие, незаметные движения. В теле человека количество скелетных мышц доходит до 400. Общая их масса у взрослого составляет 30–35 процентов от массы тела. Мышцы крепятся к скелету не в один слой, они могут быть глубокими и поверхностными, заходить друг на друга, создавать сложные перекрестья.

Каково строение скелетной мышцы?

1.      Мышечное волокно скелетной мышцы — это структура, в которой нельзя выделить отдельные клетки. Она образуется в результате слияния множества клеток, так что их стенки исчезают, а ядра свободно лежат в цитоплазме. В результате получается так называемый многоядерный симпласт. Внутри него имеются сократительные волоконца миофибриллы, построенные из белков актина, миозина, титина и других, которые в каждом волокне при тренировке и интенсивной мышечной работе увеличиваются в количестве. Именно благодаря этому растет объем скелетных мышц. Таким образом, сила мышцы зависит от количества в ней мышечных волокон. Грамотно выстроенная система тренировок ведет к увеличению объема мышц, бездеятельность разрушает волокна, приводит к атрофии.

2.      Мышечные волокна, работающие в одном направлении, собраны в пучки, каждый из которых окутан фасцией — тонкой оболочкой из соединительной ткани.

3.      Множество пучков составляют скелетную мышцу, которую снаружи тоже покрывает соединительнотканная фасция. Названия частей скелетной мышцы напоминают отделы тела какого-то зверька: брюшко (самая толстая часть), головка и хвост — здесь фасция переходит в сухожилия, крепящие мышцу к шероховатостям, бугоркам, прочим выростам на костях.

Характеристики скелетной мышцы

1.      Сократимость — мышца может изменять поперечный размер: она уменьшается в длину, при этом увеличиваясь в толщину.

2.      Растяжимость — мышца способна увеличивать длину, уменьшаясь в толщину.

3.      Возбудимость (раздражимость) — мышечная и нервная ткань способна как воспринимать раздражение, так и реагировать на него. Напомним, что возбудимость характерна для любой клетки.

4.      Эластичность — после сокращения мышца возвращается в прежнее положение и приобретает изначальный размер.

Основные группы мышц

1.      Мышцы головы и шеи. Среди них можно назвать жевательные мышцы, крепящиеся к костям черепа одним концом, а противоположным — к нижней челюсти. Мимические мышцы — крепятся к лицевой части черепа и к поверхности кожи. А вот круговые мышцы глаз вовсе не прикреплены к костям.

2.      Мышцы спины. Примеры — широчайшая и трапециевидная мышцы. Обеспечивают движения головы, лопаток, наклоны и повороты шеи, помогают поднимать и опускать руки, поддерживают человека в вертикальном положении.

3.      Мышцы груди. Первая группа присоединяется к костям плечевого пояса и рук, обеспечивает их двигательную активность. Вторая группа — межреберные мышцы, которые отвечают за колебательные движения ребер при дыхании.

4.      Мышцы живота. Брюшной пресс образует стенки живота, выполняет двигательную и защитную функции. Диафрагма — ее главная функция: участие в дыхательных движениях.

5.      Мышцы плечевого пояса и руки отвечают за движения руки и ее отделов, участвуют в мелких сложных операциях. Примеры мышц плечевого пояса: дельтовидная, большая круглая, подлопаточная. Мышцы руки: плечевая, локтевая, длинная ладонная.

6.      Мышцы тазового пояса и ноги ответственны за подвижность бедра и голени. Икроножная мышца — самая массивная скелетная мышца. Сюда относятся ягодичные мышцы. Мышцы голени двигают стопу, мышцы стопы отвечают за сгибание и разгибание пальцев ног.

Функции мышц

Скелетные мышцы двигают костями в суставах. По функциям, то есть по направлению сокращений, они делятся на следующие пять основных групп:

1.      Сгибатели (например, бицепс).

2.      Разгибатели (трицепс).

3.      Приводящие сустав (широчайшая мышца спины).

4.      Отводящие сустав (ягодичная, дельтовидная мышцы).

5.      Вращатели сустава — мышцы вращения внутрь (пронаторы), мышцы вращения наружу (супинаторы). Так, пронатор — круглая мышца плеча. Супинатор — портняжная мышца.

Как мы понимаем, мышцы могут осуществлять совместные движения, а могут «тянуть» в разные стороны. Поэтому различают мышцы синергисты, которые вместе и дружно участвуют в движении сустава (например, плечевая мышца и бицепс) и антагонисты — они двигают сустав в противоположном направлении (например, антагонисты в локтевом суставе: двуглавая мышца сгибает, а трехглавая разгибает).

Хочешь сдать экзамен на отлично? Жми сюда - репетитор онлайн по биологии (ЕГЭ)

Объяснение важности скелетных мышц

Узнайте расположение и роль скелетных мышц в организме человека

Скелетные мышцы прикрепляются к костям сухожилиями.

Создано и произведено QA International. © QA International, 2010. Все права защищены.www.qa-international.com

Выписка

ДИКТОР: В человеческом теле более 600 различных мышц. Большинство из них называются скелетными мышцами, потому что они прикреплены к скелету. Скелетные мышцы прикреплены к костям белесыми волокнами, называемыми сухожилиями.

Некоторые мышцы очень длинные. Например, портняжная мышца составляет 50 сантиметров между бедренной костью и большеберцовой костью. С другой стороны, некоторые мышцы очень короткие.Мышцы головы, которые перемещают разные части лица, - это короткие мышцы. Массажеры и височные мышцы перемещают нижнюю банку. Однако большинство мышц головы не перемещают кости, а перемещают кожу лица. Orbicularis мышцы двигают веки. Скуловые мышцы приподнимают уголки губ, а треугольные мышцы тянут их вниз. Используя мышцы головы, люди могут выражать самые разные эмоции, такие как удивление и гнев.

В общей сложности скелетные мышцы составляют почти половину нашей массы тела.Когда мы двигаемся, мы приказываем нашим скелетным мышцам сокращаться. Эти произвольные движения обычно влекут за собой скоординированное действие ряда мышц. Например, две основные скелетные мышцы отвечают за движение предплечья, двуглавой мышцы, вставленной в переднюю часть локтевого сустава, и трицепса, вставленной в заднюю часть сустава. Когда бицепс сокращается, он сгибает предплечье. Трицепс неактивен. Чтобы вернуться в исходное положение, трицепс сокращается, а бицепс автоматически расслабляется.Некоторые движения требуют задействования большего количества мышц. Например, при растяжении ноги задействуется не менее четырех различных мышц.

.

скелетных мышц | Определение и функции

Скелетная мышца , также называемая произвольной мышцей , у позвоночных, наиболее распространенная из трех типов мышц тела. Скелетные мышцы прикреплены к костям с помощью сухожилий, и они производят все движения частей тела по отношению друг к другу. В отличие от гладких мышц и сердечной мышцы, скелетные мышцы находятся под произвольным контролем. Однако, как и сердечная мышца, скелетная мышца имеет поперечно-полосатую форму; его длинные, тонкие, многоядерные волокна пересекаются правильным рисунком из тонких красных и белых линий, что придает мышце характерный вид.Волокна скелетных мышц связаны между собой соединительной тканью и сообщаются с нервами и кровеносными сосудами. Для получения дополнительной информации о структуре и функции скелетных мышц, см. мышечная и мышечная система человека.

  • поперечнополосатая мышца; двуглавая мышца человека

    Строение поперечно-полосатой или скелетной мышцы. Поперечно-полосатая мышечная ткань, такая как ткань двуглавой мышцы человека, состоит из длинных тонких волокон, каждое из которых, по сути, представляет собой пучок более тонких миофибрилл.Внутри каждой миофибриллы находятся филаменты белков миозина и актина; эти нити скользят друг мимо друга, когда мышца сокращается и расширяется. На каждой миофибрилле можно увидеть регулярно встречающиеся темные полосы, называемые Z-линиями, в местах наложения актиновых и миозиновых филаментов. Область между двумя линиями Z называется саркомером; саркомеры можно рассматривать как первичную структурную и функциональную единицу мышечной ткани.

    Encyclopædia Britannica, Inc.
  • скелетная мышца

    Микрофотография, показывающая расположение волокон скелетных мышц в поперечном сечении.

    © Эд Решке / Питер Арнольд, Inc.

Британская викторина

Человеческое тело

Возможно, вы знаете, что человеческий мозг состоит из двух половин, но какая часть человеческого тела состоит из крови? Проверьте обе половины своего разума в этой викторине по анатомии человека.

.

Структура и функция скелетных мышц - Musculoskeletal Genetics

Мышечная система отвечает за движение человеческого тела, позу, движение веществ внутри тела и за выделение тепла телом. Существует около 700 известных и названных мышц, и, кроме того, мышечная ткань также находится внутри сердца, органов пищеварения и кровеносных сосудов.

В организме человека есть 3 основных типа мышц:

По материалам http: // sciencehumanbodytribute.weebly.com/muscular-system.html

Скелетная мышца - это произвольная мышца, что означает, что мы можем активно контролировать ее функцию. Он прикреплен к кости и образует отдельный орган из мышечной ткани, кровеносных сосудов, сухожилий и нервов, который покрывает наши кости и позволяет двигаться.

Скелетные мышцы часто существуют парами, при этом одна мышца является основным двигателем, а другая действует как антагонист. Например, когда вы сгибаете руку, ваши бицепсы сокращаются, а трицепсы расслаблены.Когда ваша рука возвращается в вытянутую позицию, сокращаются трицепсы, а бицепсы расслабляются.

Скелетная мышца - удивительная ткань со сложной структурой. Он состоит из удлиненных многоядерных клеток, называемых миоцитами (или миофибриллами). Мышечные клетки могут иметь длину от 1 мм до 30 см. Самая длинная мышечная клетка в нашем теле находится в портняжной мышце и имеет длину 30 см (почти 12 дюймов!).

Из биологических форумов.com

Под микроскопом отдельные мышечные клетки кажутся полосатыми (см. Изображение ниже). Это происходит из-за высокоорганизованной структуры мышечных волокон, где a ctin и миозиновые миофиламенты уложены и перекрываются в регулярные повторяющиеся массивы, образуя саркомеры. Нити актина и миозина скользят друг относительно друга и отвечают за сокращение мышц.

Чтобы увидеть, как мышцы сокращаются и работают, посмотрите видео здесь .

Энергия для мышечной функции поступает из внутриклеточных органелл, называемых митохондриями . Митохондрии - это электростанции каждой клетки нашего тела, отвечающие за доставку энергии, необходимой клеткам для их функционирования.

Мышцы нервированы мотонейронами . Моторный нейрон и окруженные им мышечные волокна образуют двигательную единицу . Размер двигательных единиц в организме варьируется в зависимости от функции мышцы. Для тонких движений (глаз) на нейрон приходится меньше мышечных волокон, что позволяет им двигаться.Мышцы, требующие большой силы, имеют много мышечных волокон на единицу. Тело может контролировать силу, решая, сколько двигательных единиц оно активирует для данной функции.

Из http://www.rtmsd.org

В нашем теле есть два типа скелетных мышц, которые различаются по функциям. Медленно сокращающиеся мышечные волокна лучше подходят для тренировок на выносливость и могут работать долгое время, не уставая. Быстро сокращающиеся мышцы хороши для быстрых движений, поскольку они быстро сокращаются, но быстро устают и потребляют много энергии.

Большинство наших мышц состоит из смеси медленных и быстро сокращающихся мышечных волокон. Однако мышцы, участвующие в поддержании осанки, содержат в основном медленно сокращающиеся мышечные волокна, а мышцы, отвечающие за движения глаз, состоят из быстро сокращающихся мышечных волокон.

И, чтобы немного повеселиться, вот прекрасная песня, описывающая все мышцы ног:

.

Расположение и расположение волокон скелетных мышц

Скучно из-за анатомии?
Попробуйте это.

  • Учитесь быстрее
    и веселее
  • С легкостью сдайте следующий экзамен
  • Получите экспертную поддержку
    от ботаников-анатомов

Нам доверяют более 1000000 студентов и профессионалов

Последнее обновление:

Изучите анатомию быстрее и
запомните все, что вы изучаете

Начать сейчас

Волокна скелетных мышц расположены внутри мышц, где они организованы в пучки, называемые пучками (= фасцикулы).

1

2

3

  • Эпимизий представляет собой слой соединительной ткани, который покрывает внешнюю поверхность мышцы

1

2

, окружая и удерживая вместе пучок - это слой соединительной ткани, известный как перимизий .

Делали ли вы какую-либо из этих распространенных ошибок при обучении анатомии?

1

2

Части перимизиума переходят в пучок и сливаются с эндомизием , тонким слоем ареолярной соединительной ткани, покрывающей каждое мышечное волокно.

1

2

В глубокой фасции вокруг мышц находится несколько крупных артерий, вен и нервов. Ветви этих сосудов и нервов проникают в каждую мышцу близко к ее средней точке, затем проходят в эпимизий и перимизий слои. В эндомизии отдельные мышечные волокна (клетки) поддерживаются близлежащими капиллярами и нервными клетками.

.

Введение в скелетную систему

Люди - позвоночные животные, животные с позвоночником или позвоночником. Они опираются на прочный внутренний каркас, который центрируется на выступающем позвоночнике. Скелетная система человека состоит из костей, хрящей, связок и сухожилий и составляет около 20 процентов веса тела.

Живые кости в нашем организме используют кислород и выделяют продукты обмена веществ. Они содержат активные ткани, которые потребляют питательные вещества, нуждаются в кровоснабжении и изменяют форму или реконструируются в ответ на изменения механического воздействия.

Кости образуют жесткий каркас, известный как скелет, который поддерживает и защищает мягкие органы тела.

Скелет поддерживает тело против силы тяжести. Крупные кости нижних конечностей поддерживают туловище в положении стоя.

Каркас также защищает мягкие части тела. Сращенные кости черепа окружают мозг, чтобы сделать его менее уязвимым для травм. Позвонки окружают и защищают спинной мозг и кости грудной клетки, помогая защитить сердце и легкие грудной клетки.

Кости работают вместе с мышцами как простые механические рычажные системы, вызывающие движения тела.

Кости содержат больше кальция, чем любой другой орган. Межклеточный матрикс кости содержит большое количество солей кальция, наиболее важной из которых является фосфат кальция.

Когда уровень кальция в крови падает ниже нормы, кальций высвобождается из костей, чтобы обеспечить его достаточное количество для метаболических нужд. Когда уровень кальция в крови повышается, избыток кальция откладывается в костном матриксе.Динамический процесс высвобождения и накопления кальция происходит почти непрерывно.

Кроветворение, образование клеток крови, в основном происходит в красном костном мозге.

У младенцев красный костный мозг находится в костных полостях. С возрастом он в значительной степени заменяется желтым кабачком для хранения жира. У взрослых красный костный мозг ограничен губчатой ​​костью черепа, ребрами, грудиной, ключицами, позвонками и тазом. Красный костный мозг участвует в образовании эритроцитов, лейкоцитов и тромбоцитов.

.

Смотрите также

3