Сила мышцы это


Сила мышц

Сила — это произведение массы на сообщенное ей ускорение. При выполнении некоторых трудовых и спортивных движений наибольшая сила мышц достигается либо за счет наибольшего увеличения массы поднимаемого или перемещаемого груза, либо за счет возрастания ускорения, т. е. изменения скорости до максимальной величины. В первом случае увеличивается напряжение мышцы, а во втором — скорость ее сокращения. Движения у человека обычно происходят при сочетании сокращения мышц с их напряжением. Поэтому при возрастании скорости сокращения пропорционально увеличивается и напряжение. Чем больше масса груза, тем меньше сообщаемое ему человеком ускорение.

Максимальная сила мышцы измеряется определением массы максимального груза, который она может сместить. При таких изометрических условиях мышца почти не сокращается, а ее напряжение является предельным. Следовательно, степень напряжения мышцы — выражение ее силы.

Силовые движения характеризуются максимальным напряжением при увеличении массы груза и неизменной скорости его перемещения.

Сила мышцы не зависит от ее длины, а зависит главным образом от ее толщины, от физиологического поперечника, т. е. от количества мышечных волокон, приходящихся на наибольшую площадь ее поперечного сечения. Физиологическим поперечником называется площадь сечения всех мышечных волокон. У перистых и полуперистых мышц этот поперечник больше анатомического. У веретенообразных и параллельных мышц физиологический поперечник совпадает с анатомическим. Поэтому наиболее сильные перистые мышцы, затем полуперистые, веретенообразные и, наконец, наиболее слабые мышцы с параллельным ходом волокон. Сила мышцы зависит также от ее функционального состояния, от условий ее работы, от предельной частоты и величины, пространственной и временной суммации притекающих к ней нервных импульсов, вызывающих ее сокращение, количества функционирующих нейромоторных единиц и от импульсов, регулирующих обмен веществ. Сила мышц повышается при тренировке, снижается при голодании и утомлении. Вначале она увеличивается с возрастом, а затем к старости уменьшается.

Сила мышцы при максимальном ее напряжении, развиваемая при наибольшем ее возбуждении и наиболее выгодной длине до начала ее напряжения, называется абсолютной.

Абсолютная сила мышцы определяется в килограммах или ньютонах (Н). Максимальное напряжение мышцы у человека вызывается волевым усилием.

Относительнаясила мышцы высчитывается следующим образом. Определив абсолютную силу в килограммах или ньютонах, делят ее на число квадратных сантиметров поперечного сечения мышцы. Это позволяет сравнить силу разных мышц одного и того же организма, силу одноименных мышц разных организмов, а также изменения силы одной и той же мышцы данного организма в зависимости от сдвигов ее функционального состояния. Относительная сила скелетной мышцы лягушки 2-3 кг, разгибателя шёи человека — 9 кг, жевательной мышцы — 10 кг, двуглавой мышцы плеча — 11 кг, трехглавой мышцы плеча — 17 кг. 

Растяжимость и эластичность

Растяжимостью называется способность мышцы увеличивать длину при действии груза или силы. Растяжение мышцы зависит от массы груза. Чем больше груз, тем больше растягивается мышца. По мере возрастания груза требуется все больший груз или сила для получения одинакового прироста длины. Имеет значение и продолжительность действия груза. При приложении груза или силы в течение 1-2 с происходит удлинение мышцы (быстрая фаза), а затем ее растяжение замедляется и может продолжаться несколько часов (медленная фаза). Растяжимость зависит от функционального состояния мышцы. Красные мышцы растягиваются больше белых. Растяжимость зависит и от типа строения мышцы: параллельные мышцы растягиваются больше перистых.

Скелетные мышцы обладают эластичностью, или упругостью,— способностью возвращаться после деформации в исходное состояние. Эластичность, как и, растяжимость, зависит от функционального состояния, строения мышцы, ее вязкости. Восстановление исходной длины мышцы также происходит в 2 фазы: быстрая фаза продолжается 1-2 с, медленная фаза — десятки минут. Длина мышцы после растяжения, вызванного большим грузом или силой, и после длительного растяжения долго не возвращается к исходной. После кратковременного действия небольших грузов длина мышцы быстрее возвращается к исходной. Таким образом, для эластичности мышцы имеет значение степень и продолжительность ее растяжения. Эластичность мышцы малая, непостоянная и почти совершенная.

Длина анизотропных дисков при сокращении и пассивном растяжении не изменяется. Уменьшение длины мышечного волокна при сокращении и увеличение при его растяжении происходит вследствие изменения длины изотропных дисков. При укорочении волокна до 65% изотропные диски исчезают. Во время изометрического сокращения анизотропные диски укорачиваются, а изотропные удлиняются.

При сокращении увеличивается эластичность изотропных дисков, которые становятся почти в 2 раза длиннее анизотропных. Это предохраняет волокно от разрыва при очень быстром уменьшении длины анизотропных дисков, наступающем при изометрическом сокращении мышцы. Следовательно, растяжимостью обладают только изотропные диски.

Растяжимость увеличивается при утомлении пропорционально возрастанию утомления. Растяжение мышцы вызывает повышение ее обмена веществ и температуры. Гладкие мышцы растягиваются значительно больше, чем скелетные, в несколько раз больше своей первоначальной длины.

Эластичность мышцы уменьшается при контрактурах, при окоченении. В покое эластичность мышцы является свойством миофибрилл, саркоплазмы, сарколеммы и соединительнотканных прослоек, при сокращении — свойством сокращенных миофибрилл.

Растяжение гладких мышц до критического предела может происходить без изменения их напряжения. Это имеет большое физиологическое значение при растяжении гладкой мускулатуры полых органов, в которых при этом не изменяется давление. Например, давление в мочевом пузыре не изменяется при значительном растяжении его мочой.

Работоспособность мышц

Работа мышцы измеряется произведением массы поднятого ею груза на высоту его поднятия или на путь, следовательно, на высоту сокращения мышцы. Универсальной единицей работы, а также количества теплоты, является джоуль (Дж). Работоспособность мышцы изменяется в зависимости от ее физиологического состояния и нагрузки. При увеличении груза работа мышцы вначале увеличивается, а затем после достижения максимального значения уменьшается и доходит до нуля. Начальное увеличение работы при увеличении груза зависит от повышения способности мышцы возбуждаться и от прироста высоты сокращения. Последующее уменьшение работы зависит от понижения сократительной способности мышцы вследствие возрастающего растяжения грузом. Величина работы зависит от количества мышечных волокон и их длины. Чем больше поперечное сечение мышцы, чем она толще, тем больше груз, который она может поднять.

Перистая мышца может поднять большой груз, но так как длина ее волокон меньше длины всей мышцы, то она поднимает груз на сравнительно небольшую высоту. Параллельная мышца может поднять меньший груз, чем перистая, так как ее поперечное сечение меньше, но высота подъема груза больше, так как длина ее мышечных волокон больше. При условии возбуждения всех мышечных волокон высота сокращения мышц при прочих равных условиях тем больше, чем волокна длиннее. На величину работы влияет растяжение мышечных волокон грузом. Первоначальное растяжение небольшими грузами увеличивает высоту сокращения, а растяжение большими грузами уменьшает высоту сокращения мышцы. Работа мышцы зависит также от количества мионевральных аппаратов, от их расположения и от одновременного их возбуждения. При утомлении работа мышцы уменьшается и может прекратиться; высота сокращения мышцы по мере развития утомления понижается, а затем доходит до нуля.

Законы оптимальной нагрузки и оптимального ритма

Так как по мере увеличения груза уменьшается высота сокращения мышцы, то работа, являющаяся произведением груза и высоты, достигает наибольшей величины при некоторых средних нагрузках. Эти средние нагрузки называются оптимальными.

При прочих равных условиях при оптимальных нагрузках мышца сохраняет свою работоспособность наиболее продолжительное время. При оптимальной нагрузке работоспособность мышцы зависит от частоты ритма ее сокращений, т. е. от частоты равномерного чередования сокращений мышцы. Ритм сокращений мышцы при средней нагрузке, при которой сохраняется наиболее продолжительная работоспособность мышцы, называется оптимальным,

У разных мышц оптимальные нагрузки и оптимальный ритм неодинаковы. Они изменяются и у данной мышцы в зависимости от условий работы и ее физиологического состояния.

Оптимальная нагрузка и оптимальный ритм обусловлены прежде всего нервной системой (И. М. Сеченов). Что касается человека, то его умственная и физическая работоспособность определяется социальными условиями труда (орудиями труда, отношением к труду, эмоциями и др.). Оптимальная нагрузка и оптимальный ритм у человека значительно изменяются в зависимости от жизненного опыта, возраста, питания и тренированности.

Динамическая работа и статическое усилие

Работа скелетных мышц, обеспечивающая движения тела и его частей, называется динамической, а напряжение скелетных мышц, обеспечивающее поддержание тела в пространстве и преодоление земного притяжения, называется статическим усилием.

Динамическая работа различается по мощности. Измерителем мощности, или интенсивности, является работа, выполненная в единицу времени. Единица мощности — ватт (вт = 1 Дж/с). Между интенсивностью динамической работы и ее продолжительностью существует закономерное отношение. Чем больше интенсивность работы, тем меньше ее продолжительность. Различают работу малой, умеренной, большой, субмаксимальной и максимальной интенсивности. При динамической работе учитывается скорость, или быстрота движений. Для измерения быстроты движений используются: 1) время двигательной реакции, быстрота реагирования, или латентный период двигательного рефлекса, 2) продолжительность отдельного движения при минимальном напряжении мышц, 3) число движений в единицу времени, т. с. их частота.

Скорость движений зависит от характера и ритма импульсов из центральной нервной системы, от функциональных свойств мышц во время движений, а также от их строения. Способность производить мышечную деятельность определенного вида и интенсивности в течение наибольшего времени обозначается как выносливость. Чем больше выносливость, тем позднее начинается утомление.

Основные виды выносливости: 1) статическая — непрерывное, в течение предельного времени поддерживание напряжения скелетных мышц при постоянной силе давления или удерживании в постоянном положении определенного груза. Предельное время статического усилия тем меньше, чем больше сила давления или величина груза, 2) динамическая — непрерывное выполнение мышечной работы определенной интенсивности в течение предельного времени. Предельное время динамической работы скелетных мышц, зависит от ее мощности. Чем больше мощность, тем короче предельное время динамической выносливости.

Динамическая выносливость в большой степени зависит от повышения работоспособности внутренних органов, особенно сердечнососудистой и дыхательной систем.

Динамическая работа характеризуется также ловкостью.

Ловкость — это способность производить координированные движения с очень большой пространственной точностью и правильностью, быстро и в строго определенные, очень небольшие промежутки времени при внезапной перемене внешних условий.

Статическое усилие состоит в поддержании в течение некоторого времени напряжения мышц, т. е. в удержании веса тела, конечности или груза в неподвижном состоянии. В физическом смысле удерживание груза или тела в неподвижном состоянии не является работой, так как при этом отсутствует движение груза или веса тела. Примерами статических усилий являются неподвижное стояние, вис, упор, неподвижное держание руки, ноги или груза. Продолжительность статического усилия зависит от степени напряжения мышц. Чем меньше величина напряжения мышц, тем оно продолжительнее. При статических усилиях расходуется, как правило, значительно меньше энергии, чем при динамической работе. Расход энергии тем больше, чем тяжелее статическое усилие. Тренировка увеличивает продолжительность статических усилий.

Выносливость к статическим усилиям зависит не от повышения работоспособности внутренних органов, а главным образом от функциональной устойчивости двигательных центров к частоте и силе афферентных импульсов.

Объем и сила мышц: почему некоторые люди

Мы перевели, переработали и отредактировали грандиозную базовую статью Грега Наколса о том, как взаимосвязан объем и сила мышц. В статье подробно объясняется, к примеру, почему средний пауэрлифтер на 61% сильнее среднего бодибилдера при том же объеме мышц.

Наверняка вам встречалась такая картина в спортзале: огромный мускулистый парень делает приседания с 200-килограммовой штангой, пыхтя и делая небольшое количество повторений. Затем с такой же штангой работает парень с намного менее массивными ногами, но легко делает большее количество повторений.

Аналогичная картина может повторяться и в жиме или становой. Да и из курса школьной биологии нас учили: сила мышцы зависит от площади поперечного сечения (грубо говоря – от толщины), однако наука показывает, что это сильное упрощение и дело обстоит не совсем так.

Площадь поперечного сечения мышцы.

В качестве примера посмотрите, как 85-килограммовый парень жмет от груди 205 кг:

Однако гораздо более массивные ребята не могут приблизиться к таким показателям в жиме.

Или вот как выглядит 17-летний атлет Джейсон Лопез, который сам весит около 77 кг, а приседает со штангой в 265 кг:

Ответ прост: на силу влияет много других факторов, кроме объема мышц.

Средний мужчина весит около 80 кг. Если человек – не тренированный, то тогда около 40% веса его тела составляют скелетные мышцы или около 32 кг. Несмотря на то, что рост мышечной массы очень сильно зависит от генетики, в среднем мужчина способен за 10 лет тренировок увеличить свою мышечную массу на 50%, то есть добавить к своим 32 кг мышц еще 16.

Скорее всего 7-8 кг мышц из этой прибавки добавится в первый год упорных тренировок, еще 2-3 кг – за следующие пару лет, а остальные 5-6 кг – за 7-8 лет упорных тренировок. Это типичная картина роста мышечной массы. С ростом мышечной массы примерно на 50% сила мышц возрастет в 2-4 раза.

Грубо говоря, если в первый день тренировок человек может поднять на бицепс вес в 10-15 кг, то впоследствии этот результат может вырасти до 20-30 кг.

С приседом: если в первые тренировки вы приседали с 50-килограммовой штангой, этот вес может вырасти до 200 кг. Это не научные данные, просто для примера – как могут расти силовые показатели. При подъеме на бицепс сила может вырасти примерно в 2 раза, а вес в приседаниях – в 4 раза. Но при этом объем мышц вырос только на 50%. То есть получается, что в сравнении с ростом массы, сила растет в 4-8 раз больше.

Безусловно мышечная масса имеет важное значение для силы, но, возможно, не определяющее. Давайте пройдемся по основным факторам, влияющим на силу и массу.

Мышечные волокна

Как показывают исследования: чем больше размер мышечного волокна, тем больше его сила.

На этом графике показана явная зависимость размеров мышечных волокон и их силы:

Как зависит сила (вертикальная шкала) от размера мышечных волокон (горизонтальная шкала). Исследование: From Gilliver, 2009.

Однако если абсолютная сила стремится к росту при бОльшем объеме мышечных волокон, относительная сила (сила в соотношении с размером) – наоборот – падает.

Давайте разберемся почему так происходит.

Есть показатель для определения силы мышечных волокон относительно их объема – “specific tension” (переведем его как “удельная сила”). Для этого нужно максимальную силу разделить на площадь поперечного сечения:

Мышечные волокна: удельная сила волокон бодибилдеров на 62% ниже лифтеров

Так вот дело в том, что удельная сила очень сильно зависит от типа мышечных волокон.

В этом исследовании ученые выяснили, что удельная сила мышечных волокон профессиональных бодибилдеров на целых 62% ниже, чем у профессиональных лифтеров.

То есть, условно говоря, мышцы среднего пауэрлифтера сильнее на 62% мышц среднего бодибилдера при одинаковом объеме.

Более того, мышечные волокна бодибилдеров также слабее на 41%, чем у нетренированных людей из расчета на их площадь поперечного сечения. То есть из расчета на квадратный сантиметр толщины, мышцы бодибилдеров слабее, чем у тех, кто вообще не тренировался (но в целом, бодибилдеры, конечно, сильнее за счет общего объема мышц).

В этом исследовании сравнили разные мышечные волокна и выяснили, что самые сильные мышечные волокна в 3 раза сильнее самых слабых той же толщины – это очень большая разница. 

Мышечные волокна быстрее растут в площади сечения, чем в силе

Так вот оба этих исследования показали, что с увеличением размера мышечных волокон их сила к толщине падает. То есть в размерах они растут больше, чем в силе.

Зависимость такая: при удвоении площади поперечного сечения мышцы ее сила вырастает только на 41%, а не в 2 раза.

В этом плане с силой мышечного волокна лучше коррелирует диаметр волокна, а не площадь сечения (внесите это исправление в школьные учебники по биологии!)

В конечном итоге все показатели ученые свели вот к такому графику:

По горизонтали: увеличение площади поперечного сечения мышцы. Синяя линия – рост диаметра, красная – общий рост силы, желтая – рост удельной силы (на сколько сила увеличивается при увеличении площади поперечного сечения).

Вывод, который можно сделать: с ростом объема мышц растет и сила, однако прирост размера мышцы (т.е. площади поперечного сечения) обгоняет прирост силы. Это усредненные показатели, собранные из целого ряда исследований и в некоторых исследованиях данные разнятся.

К примеру, в этом исследовании за 12 недель тренировок у подопытных площадь сечения мышц выросла в среднем на 30%, но при этом удельная сила не изменилась (то есть, читаем между строк, сила тоже увеличилась примерно на 30%).

Результаты этого исследования схожи: площадь поперечного сечения мышцы увеличилась у участников на 28-45% после 12 недель тренировок, но удельная сила не изменилась.

С другой стороны, эти 2 исследования (раз и два) показали увеличение удельной силы мышц при отсутствии роста самих мышц в объеме. То есть сила выросла, а объем – нет и благодаря этому сочетанию, получается, выросла удельная сила.

Во всех этих 4 исследованиях сила росла в сравнении с диаметром мышцы, но в сравнении с площадью поперечного сечения сила росла только в том случае, если мышечные волокна не росли.

Итак, давайте подытожим важную тему с мышечными волокнами:

  • Люди сильно отличаются по количеству мышечных волокон того или другого типа. Помните: удельная сила мышечных волокон у лифтеров (тренирующих силу) в среднем на 61% больше, чем у бодибилдеров (тренирующих объем). Грубо говоря, при одинаковых по объему мышцах лифтерские сильнее в среднем на 61%.
  • Самые слабые мышечные волокна в 3 раза слабее самых сильных. Их количество у каждого человека определяется генетически. Э

почему некоторые люди — сильнее, а некоторые — объемнее — CMT Научный подход

«Зожник» перевел, переработал и отредактировал грандиозную базовую статью Грега Нуколса о том, как взаимосвязан объем и сила мышц. В статье подробно объясняется, к примеру, почему средний пауэрлифтер на 61% сильнее среднего бодибилдера при том же объеме мышц.

Наверняка вам встречалась такая картина в спортзале: огромный мускулистый парень делает приседания с 200-килограммовой штангой, пыхтя и делая небольшое количество повторений. Затем с такой же штангой работает парень с намного менее массивными ногами, но легко делает большее количество повторений.

Аналогичная картина может повторяться и в жиме или становой. Да и из курса школьной биологии нас учили: сила мышцы зависит от площади поперечного сечения (грубо говоря – от толщины), однако наука показывает, что это сильное упрощение и дело обстоит не совсем так.

Площадь поперечного сечения мышцы.

В качестве примера посмотрите, как 85-килограммовый парень жмет от груди 205 кг:

Однако гораздо более массивные ребята не могут приблизиться к таким показателям в жиме.

Ответ прост: на силу влияет много других факторов, кроме объема мышц

Средний мужчина весит около 80 кг. Если человек – не тренированный, то тогда около 40% веса его тела составляют скелетные мышцы или около 32 кг. Несмотря на то, что рост мышечной массы очень сильно зависит от генетики, в среднем мужчина способен за 10 лет тренировок увеличить свою мышечную массу на 50%, то есть добавить к своим 32 кг мышц еще 16.

Скорее всего 7-8 кг мышц из этой прибавки добавится в первый год упорных тренировок, еще 2-3 кг – за следующие пару лет, а остальные 5-6 кг – за 7-8 лет упорных тренировок. Это типичная картина роста мышечной массы. С ростом мышечной массы примерно на 50% сила мышц возрастет в 2-4 раза.

Грубо говоря, если в первый день тренировок человек может поднять на бицепс вес в 10-15 кг, то впоследствии этот результат может вырасти до 20-30 кг.

С приседом: если в первые тренировки вы приседали с 50-килограммовой штангой, этот вес может вырасти до 200 кг. Это не научные данные, просто для примера – как могут расти силовые показатели. При подъеме на бицепс сила может вырасти примерно в 2 раза, а вес в приседаниях – в 4 раза. Но при этом объем мышц вырос только на 50%. То есть получается, что в сравнении с ростом массы, сила растет в 4-8 раз больше.

Безусловно мышечная масса имеет важное значение для силы, но, возможно, не определяющее. Давайте пройдемся по основным факторам, влияющим на силу и массу.

Мышечные волокна

Как показывают исследования: чем больше размер мышечного волокна, тем больше его сила.

На этом графике показана явная зависимость размеров мышечных волокон и их силы:

Как зависит сила (вертикальная шкала) от размера мышечных волокон (горизонтальная шкала). Исследование: From Gilliver, 2009.

Однако если абсолютная сила стремится к росту при бОльшем объеме мышечных волокон, относительная сила (сила в соотношении с размером) — наоборот — падает.

Давайте разберемся почему так происходит.

Есть показатель для определения силы мышечных волокон относительно их объема — “specific tension” (переведем его как «удельная сила»). Для этого нужно максимальную силу разделить на площадь поперечного сечения:

Мышечные волокна: удельная сила волокон бодибилдеров на 62% ниже лифтеров

Так вот дело в том, что удельная сила очень сильно зависит от типа мышечных волокон.

В этом исследовании ученые выяснили, что удельная сила мышечных волокон профессиональных бодибилдеров на целых 62% ниже, чем у профессиональных лифтеров.

То есть, условно говоря, мышцы среднего пауэрлифтера сильнее на 62% мышц среднего бодибилдера при одинаковом объеме.

Более того, мышечные волокна бодибилдеров также слабее на 41%, чем у нетренированных людей из расчета на их площадь поперечного сечения. То есть из расчета на квадратный сантиметр толщины, мышцы бодибилдеров слабее, чем у тех, кто вообще не тренировался (но в целом, бодибилдеры, конечно, сильнее за счет общего объема мышц).

В этом исследовании сравнили разные мышечные волокна и выяснили, что самые сильные мышечные волокна в 3 раза сильнее самых слабых той же толщины — это очень большая разница. 

Мышечные волокна быстрее растут в площади сечения, чем в силе

Так вот оба этих исследования показали, что с увеличением размера мышечных волокон их сила к толщине падает. То есть в размерах они растут больше, чем в силе.

Зависимость такая: при удвоении площади поперечного сечения мышцы ее сила вырастает только на 41%, а не в 2 раза.

В этом плане с силой мышечного волокна лучше коррелирует диаметр волокна, а не площадь сечения (внесите это исправление в школьные учебники по биологии!)

В конечном итоге все показатели ученые свели вот к такому графику:

По горизонтали: увеличение площади поперечного сечения мышцы. Синяя линия — рост диаметра, красная — общий рост силы, желтая — рост удельной силы (на сколько сила увеличивается при увеличении площади поперечного сечения).

Вывод, который можно сделать: с ростом объема мышц растет и сила, однако прирост размера мышцы (т.е. площади поперечного сечения) обгоняет прирост силы. Это усредненные показатели, собранные из целого ряда исследований и в некоторых исследованиях данные разнятся.

К примеру, в этом исследовании за 12 недель тренировок у подопытных площадь сечения мышц выросла в среднем на 30%, но при этом удельная сила не изменилась (то есть, читаем между строк, сила тоже увеличилась примерно на 30%).

Результаты этого исследования схожи: площадь поперечного сечения мышцы увеличилась у участников на 28-45% после 12 недель тренировок, но удельная сила не изменилась.

С другой стороны, эти 2 исследования (раз и два) показали увеличение удельной силы мышц при отсутствии роста самих мышц в объеме. То есть сила выросла, а объем — нет и благодаря этому сочетанию, получается, выросла удельная сила.

Во всех этих 4 исследованиях сила росла в сравнении с диаметром мышцы, но в сравнении с площадью поперечного сечения сила росла только в том случае, если мышечные волокна не росли.

Итак, давайте подытожим важную тему с мышечными волокнами:

  • Люди сильно отличаются по количеству мышечных волокон того или другого типа. Помните: удельная сила мышечных волокон у лифтеров (тренирующих силу) в среднем на 61% больше, чем у бодибилдеров (тренирующих объем). Грубо говоря, при одинаковых по объему мышцах лифтерские сильнее в среднем на 61%.
  • Самые слабые мышечные волокна в 3 раза слабее самых сильных. Их количество у каждого человека определяется генетически. Это означает, что гипотетически максимально возможная разница в силе мышц одного и того же объема — различается до 3 раз.
  • Удельная сила (сила на квадратный сантиметр поперечного сечения) не всегда растет с тренировками. Дело в том, что площадь поперечного сечения мышц растет в среднем быстрее, чем сила.

Место прикрепления мышц

Важный фактор силы — это то, как крепятся мышцы к костям и длина конечностей.Как вы помните из школьного курса физики — чем больше рычаг, тем легче поднимать вес.

С точки зрения мышц — чем дальше она прикреплена от сустава, тем эффективнее может его сгибать.

Если прилагать усилие в точке А, то потребуется намного больше силы для подъема того же веса по сравнению с точкой B.

Соответственно, чем дальше мышца прикреплена (и чем короче конечность) — тем больше рычаг и тем бОльший вес можно поднять. Этим отчасти объясняется, почему некоторые довольно худые ребята способны поднимать намного больше некоторых особо объемных.

К примеру, в этом исследовании говорится, что разница в силе в зависимости от места прикрепления мышц в коленном суставе у разных людей составляет 16-25%. Тут уж как повезло с генетикой.

Причем, с ростом мышц в объеме момент силы увеличивается: это происходит потому, что с ростом мышцы в объеме «угол атаки» немного меняется и этим отчасти объясняется то, что сила растет быстрее объема.

В исследовании Andrew Vigotsky есть отличные картинки, наглядно демонстрирующие, как это происходит:

Самое главное — это заключение: последняя картинка, демонстрирующая, как с ростом толщины мышцы (площади поперечного сечения) — меняется угол приложения усилий, а значит и двигать рычаг более объемным мышцам становится легче.

Способность нервной системы активировать больше волокон

Еще один фактор силы мышц вне зависимости от объема — способность ЦНС (центральной нервной системы) активировать как можно большее количество мышечных волокон для сокращения (и расслаблять волокна — антагонисты).

Грубо говоря, способность максимально эффективно передавать мышечным волокнам правильный сигнал — на напряжение одних и расслабление других волокон. Вы наверняка слышали, что в обычной жизни мы способны передавать мышцам лишь определенное нормальное усилие, но в критический момент сила может вырастать многократно. В этом месте обычно приводятся примеры, как человек поднимает автомобиль, чтобы спасти жизнь близкого (и таких примеров действительно довольно много).

Впрочем, научные исследования пока не смогли доказать это в полной мере.

Ученые сравнивали силу «добровольного» сокращения мышц, а затем с помощью электростимуляции добивались еще большего — 100% напряжения всех мышечных волокон.

В результате оказалось, что «добровольные» сокращения составляют около 90-95% от максимально возможной сократительной силы, которой добивались с помощью электростимуляции (непонятно только какую погрешность и влияние такие «стимулирующие» условия оказали на мышцы-антагонисты, которые нужно расслаблять для получения большей силы — прим. Зожника).

Ученые и автор текста делают выводы: вполне возможно, что некоторые люди смогут значительно увеличить силу, натренировав передачу сигналов мозга к мышцам, но большинство людей не способны значительно увеличить силу только за счет улучшения способности активировать больше волокон.

Нормализованная сила мышцы (НСМ)

Максимальная сократительная сила мышцы зависит от объемов мышцы, силы мышечных волокон, из которых она состоит, от «архитектуры» мышцы, грубо говоря, от всех факторов, что мы указали выше.

Объем мышцы согласно исследованиям отвечает примерно за 50% разницы в силовых показателях у разных людей.

Еще 10-20% разницы в силе объясняют «архитектурные» факторы, такие как место прикрепления, длина фасций.

Остальные факторы, отвечающие за оставшиеся 30-40% разницы в силе, вообще не зависят от размеров мышц.

Для того, чтобы рассмотреть эти факторы важно ввести понятие — нормализованная сила мышцы (НСМ) — это сила мышцы в сравнении с площадью ее сечения. Грубо говоря, насколько сильна мышца по сравнению со своим размером.

Большинство исследований (но не все) показывают, что НСМ растет по мере тренировок. Но при этом, как мы рассмотрели выше (в разделе про удельную силу), сам по себе рост объема не дает такой возможности, это значит, что рост силы обеспечивается не только ростом объема, улучшением прохождения мышечных сигналов, а другими факторами (теми самыми, что отвечают за те оставшиеся 30-40% разницы в силе).

Что это за факторы?

Улучшение качества соединительных тканей

Один из этих факторов — с ростом тренированности улучшается качество соединительной ткани, передающей усилия от мышц к костям. С ростом качества соединительной ткани скелету передается бОльшая часть усилий, а значит растет сила при том же объеме (то есть растет нормализованная сила).

Согласно исследованию до 80% силы мышечного волокна передается окружающим тканям, которые прикрепляют мышечные волокна к фасциям с помощью ряда важных белков (endomysium, perimysium, epimysium и другие). Эта сила передается сухожилиям, увеличивая общую передаваемую силу от мышц к скелету.

В этом исследовании, к примеру, показано, что ДО тренировок НСМ (сила всей мышцы на площадь поперечного сечения) была на 23% выше, чем удельная сила мышечных волокон (сила мышечных волокон на площадь поперечного сечения этих волокон).

А ПОСЛЕ тренировок НСМ (удельная сила всей мышцы) была на 36% выше(удельной силы мышечных волокон). Это означает, что сила всей мышцы при тренировках растет лучше, чем сила суммы всех мышечных волокон.

Ученые связывают это с ростом соединительных тканей, позволяющих эффективнее передавать силу от волокон к костям.

Сверху и снизу схематично показаны сухожилия — между ними — мышечное волокно. С ростом тренированности (правый рисунок) растет и соединительная ткань вокруг мышечных волокон, количество и качество соединений, позволяя эффективнее передавать усилие мышечного волокна к сухожилиям.

Идея о том, что с ростом тренированности улучшается качество волокон передающих усилие (и рисунок выше) взяты из исследования 1989 года и пока это по большей части теория.

Впрочем, есть исследование 2010 года, поддерживающее эту позицию. В ходе этого исследования при не изменившихся показателях мышечных волокон (удельная сила, пиковая сила) общая сила всей мышцы в среднем выросла на 17% (но с большим разбросом у разных людей: от 6% до 28%).

Антропометрия как фактор силы

В дополнение ко всем перечисленным факторам силы мышц, общая антропометрия тела также влияет на количество выдаваемой силы и насколько эффективно эта сила может передаваться при сгибании суставов (причем, независимо от момента силы отдельных суставов).

Возьмем для примера приседание со штангой. Гипотетическая ситуация: 2 одинаково тренированных человека с мышцами одинакового размера и состава волокон, идентично прикрепленные к костям. Если при этом у человека А бедро длиннее на 20%, чем у человека B, то человек B должен гипотетически приседать с весом на 20% больше.

Однако в реальности все происходит не совсем так, в связи с тем, что при изменении длины костей пропорционально меняется и место прикрепления мышц.

Таким образом, если у человека А бедро длиннее на 20%, то и место прикрепления мышц к кости бедра (величина рычага) также пропорционально — на 20% дальше — а значит, длина бедра нивелируется выигрышем в прикреплении мышцы дальше от сустава. Но это в среднем. В реальности антропометрические данные, конечно, разнятся от человека к человеку.

Например, есть наблюдение, что пауэлифтеры с более длинной голенью и коротким бедром склонны приседать с бОльшим весом, чем те, у кого бедро длиннее относительно голени. Аналогичное наблюдение и по поводу длины плеча и жима штанги от груди.

Независимо от всех остальных факторов антропометрия тела вносит коррективу в силу, однако измерение этого фактора представляет сложность, так как сложно отделить его от других.

Специфичность тренировок

Вы прекрасно знаете о специфичности тренировок: что тренируешь — то и улучшается. Наука говорит, что специфичность работает в отношении самых разных аспектов тренировок. Значительная часть этого эффекта работает благодаря тому, что нервная система учится эффективнее совершать определенные движения.

Вот простой пример. Это исследование часто используют в качестве примера, иллюстрирующего принцип специфичности:

  • 1 группа тренировалась с весом 30% от 1ПМ — по 3 повторения до мышечного отказа.
  • 2 группа тренировалась с весом 80% от 1ПМ — и делала только 1 повторение до мышечного отказа.
  • 3 группа тренировалась с весом 80% от 1ПМ — по 3 повторения до мышечного отказа.

Наибольшего улучшения в силе ожидаемо добилась группа 3 — тренировки с тяжелым весом и 3 подхода в упражнении.

Однако когда в конце исследований среди всех групп проверяли максимальное количество повторений с весом 30% от 1ПМ, то наилучший результат показала группа, которая и тренировалась с 30% от 1ПМ. Соответственно, при проверке максимального веса на 1ПМ результаты лучше выросли у тех, кто тренировался с 80% от 1ПМ.

Еще одна любопытная деталь в этом исследовании: когда стали проверять как изменились результаты в статической силе (ее не тренировали ни в одной из 3 групп) — то результаты в росте этого показателя были одинаковы, так как все 3 группы не тренировали специфично этот силовой показатель.

С ростом опыта и оттачиванием техники связан рост силы. Причем, в комплексных многосуставных упражнениях, где задействованы крупные мышечные группы эффект от тренировок больше, чем в небольших мышцах.

Автор этого текста улучшил показатель в приседе с момента начала тренировок в 5 раз, а вес на трицепс увеличился только в 2 раза.

На этом графике видно как с ростом количества повторений (горизонтальная шкала) уменьшается доля ошибок в упражнении. Источник: Tanaka, 2009.

Взаимосвязь между ростом силы и объема мышц

Если вы добрались до этих строк, то уже знаете, что на силу мышц влияет далеко не только их размеры (которые отвечают только примерно за половину прироста силы).

В таком случае, интересно было бы посмотреть на исследования, где все эти факторы суммируются и которые в итоге отвечают на вопрос: насколько рост мышц в объеме дает рост в силе? На удивление таких исследований совсем мало.

Для начала интересно взглянуть на это свежее исследование, где ученые выявили очень слабую связь между ростом объема квадрицепсов и силой в жиме ногами после 5-6 месяцев тренировок (нетренированные мужчины и женщины от 19 до 78 лет).

Вот как выглядели результаты:

Каждая точка — это результат конкретного человека. По горизонтали: рост в силе мышц, по вертикали — рост размеров мышц. В среднем и то и другое выросло, однако математика показывает слабую связь между этими параметрами.

В другом 9-недельном исследовании выяснили, что взаимосвязь между ростом объема и силы мышц зависит от того, как проводить измерения. Но тем не менее при любых методах измерения и это исследование показало очень слабую связь между ростом силы и объема мышц: от 2% до 24% роста силы мышц объяснялось ростом их объема.

Еще одно исследование показало связь после 12 недель тренировок — рост мышечной массы давал 23-27% корреляцию с ростом силы.

Автору удалось найти только 2 аналогичных исследования с опытными атлетами.

В этом исследовании участвовали люди, имевшие как минимум 6-месячный опыт тренировок и которые были в состоянии выжать от груди как минимум штангу своего веса. После 12 недель тренировок и исследований выяснилась более четкая взаимосвязь между приростом объемов мышц и их силы.

Прибавка сухой мышечной массы объясняла 35% прироста в силе в приседаниях со штангой и 46% прироста силы в жиме от груди.

Во втором исследовании с опытными атлетами взят намного бОльший период наблюдений — 2 года. И за такой длинный период корреляция между ростом мышечной массы и силы была более явная: 48-77% прироста силы в разных упражнениях объяснялось приростом мышечной массы.

По вертикали во всех графиках показан % увеличения сухой мышечной массы. По горизонтали улучшения в силе в различных упражнениях.

Если совместить результаты всех этих исследований в одну картину, то можно выявить такие закономерности:

  • Среди нетренированных людей рост массы и силы слабо коррелирует друг с другом.
  • Чем тренированнее становятся люди, тем более стойкая связь между ростом объемов и силы.
  • У элитных спортсменов с большим опытом корреляция достигает 65-90%, то есть рост объема мышц дает 65-90% от прироста силы. Данные: Brechue and Abe.

Любопытна связь между весом рекордсменов по пауэлифтингу (горизонтальная шкала) и рекордным весом снаряда (вертикальная шкала):

Источник: 1956 paper by Lietzke.

Автор также свел взаимосвязь между ростом силы и массы мышц из всех упомянутых исследований:

В начале тренировок сила растет быстрее объема

Множество исследований показывает, что в первые 4-6 недель прирост мышечной массы — близок к нулю, а вот сила начинает прирастать с первого же дня тренировок.

Вот наглядный график из этого исследования:

Обратите внимание на черные кружочки (сила мышц) и треугольники (объем мышц). По горизонтали: время в месяцах.

Как видно из графика после первых 2 месяцев тренировок объем вырос только на 5%, а сила — на 15%. Но за следующие месяцы прирост мышечной массы и силы были идентичны — и то и другое увеличилось примерно на 5% в месяц.

Именно эффект быстрого роста силы и слабого роста массы в первый 1-2 месяца объясняет, почему связь между ростом объема и силы у нетренированных почти не наблюдалось в исследованиях, описанных выше.

Автор также делает вывод, что корреляция между приростом мышц и силы для одного конкретного человека прослеживается более явно, чем эта же корреляция для группы людей. Тут дело в том, что на прирост силы действует множество разнонаправленных факторов и есть большой вклад генетики и для большой группы людей (какие берут в исследованиях) корреляция получается более слабая, чем у одного конкретного человека.

Если конкретно ваши мышцы при приросте в массе на 5% становятся сильнее на 10%, то скорее всего, если ваши мышцы станут еще на 5% крупнее, то и сила у васприбавится тоже примерно на 10%. Потому что такая корреляция верна именно для вас.

Перевод: Зожник.

Данная статья была опубликована на сайте «Зожник», 07.12.17.

Почему размер и сила мышц — не одно и то же

Наверное, не раз вы замечали в тренажёрном зале такую картину: накачанный бодибилдер — настоящая гора мускулов — приседает с тяжёлой штангой и прямо-таки еле встаёт. А на других стойках упражнение с тем же весом выполняет атлет без ярко выраженных мышц, причём делает это без особого напряжения. Разбираемся, почему так происходит.

От чего зависит сила, кроме размера мышц

Чем объёмнее мышца, тем толще её волокна и тем больше силы она способна произвести во время сокращения. Поэтому бодибилдеры сильнее нетренированных людей. Но в то же время они слабее атлетов силового спорта, у которых столько же или меньше мышечной массы. А значит, помимо объёма мышечных волокон, есть и другие факторы, влияющие на производство силы.

Работа нервной системы

Чтобы мышца начала сокращаться, мозг должен подать сигнал. Электрический импульс выйдет из моторной коры, доберётся до спинного мозга, а оттуда по волокнам моторных нейронов дойдёт до мышцы и заставит её волокна работать.

Чем больше волокон в мышце сократится, тем больше силы человек сможет произвести. Большинство нетренированных людей не могут по своей воле напрячь все 100% волокон. Даже при самом большом усилии работать будут только около 90%.

Силовые тренировки увеличивают способность нервной системы возбуждать больше мышечных волокон. При этом работают только действительно тяжёлые нагрузки — с 80% от максимально возможного веса. Исследование показало, что три недели тренировок с 80% от одноповторного максимума (1ПМ) увеличивают вовлечение мышечных волокон на 2,35%, тогда как занятия с лёгкими весами — 30% от 1ПМ, дают незначительный эффект — всего 0,15%.

Более того, упражнения с тяжёлыми весами в целом увеличивают эффективность работы мышц.

Жёсткость сухожилий

Когда мышца сокращается, энергия передаётся сухожилию — плотной соединительной ткани, за счёт которой мышцы крепятся к костям и двигают суставы. Если сухожилие очень жёсткое, оно не даст мышце стать короче до того, как изменится угол сгиба сустава. В таком случае сокращение мышцы и движение в суставе происходят одновременно.

Если сухожилие не жёсткое, во время сокращения мышца укорачивается быстрее, чем меняется угол сгиба. Сухожилие удлиняется и позволяет мышце стать короче до того, как конечность согнётся в суставе. Это увеличивает скорость сокращения, но снижает силу.

Силовые тренировки увеличивают жёсткость сухожилий, притом работа с большими весами — до 90% от одноповторного максимума — даёт лучшие результаты.

Способность активировать нужные мышцы

Все мышцы в нашем теле взаимосвязаны. Например, в сгибании плечевого сустава участвует бицепс, а в его разгибании — трицепс. Прямая мышца отвечает за сгибание тазобедренного сустава, а ягодичные — за разгибание. Мышцы с таким противоположным действием называются антагонистами.

Чтобы сила во время движения была максимальной, работающие мышцы (агонисты) должны напрячься, а противоположные по назначению (антагонисты) — расслабиться, иначе они будут мешать. Многократное повторение одних и тех же движений улучшает координацию и способность напрягать и расслаблять нужные мышцы.

Поэтому тренировки на силу довольно однообразны: атлеты совершенствуют навыки в одном движении и исполняют его всё лучше и лучше.

Бодибилдеры, наоборот, часто меняют упражнения, углы сгибания суставов и тренажёры, чтобы мышцы не привыкали, а организм постоянно испытывал стресс, необходимый для их роста.

Кроме того, во время сложных многосуставных движений, помимо агонистов, включаются и другие мышцы — синергисты, которые увеличивают стабильность и помогают производить больше силы. Например, во время приседаний основную работу выполняют мышцы ног, но при этом также подключается пресс. Без его сильных мышц результаты в приседании будут гораздо скромнее.

Поэтому, чтобы быть сильным, нужно прорабатывать все мышцы тела, участвующие в конкретном движении. Например, у бодибилдеров, работающих только на массу, часто довольно развиты грудь, плечи и руки, а вот мышцам кора они уделяют меньше внимания. Атлеты силового спорта, наоборот, имеют развитые мышцы-разгибатели спины, мышцы кора, ягодицы — они увеличивают стабильность тела и помогают развивать больше силы во время движений.

Как наращивать силу, а как — размер мышц

Если вас интересует только сила, занимайтесь с большими весами и малым количеством повторений.

От двух до пяти повторений в подходе обеспечивают максимальный прирост в силе.

Выбирайте многосуставные движения, в идеале — те, в которых вам необходимо проявлять силу. То есть если вы хотите установить рекорд в приседе — приседайте, если вам по работе надо переносить или толкать тяжести — делайте это в тренажёрном зале: переворачивайте покрышку, толкайте сани, выполняйте проходку фермера с гирями.

Ваше тело учится выполнять движение максимально эффективно: напрягать меньше мышечных волокон, расслаблять мышцы-антагонисты и задействовать синергисты. Это даст гораздо лучший эффект, чем выполнение изолированных упражнений на те же группы мышц.

Если сила вас не интересует, а нужны только большие мышцы, выполняйте по 8–12 повторений в подход и подбирайте вес таким образом, чтобы сделать их все, максимально выложившись.

Выбирайте разные упражнения и пробуйте новые методы выполнения уже знакомых движений: другой тренажёр, диапазон движения в суставе, угол сгиба. Всё это стимулирует рост мышц.

Что выбрать: тренировки на силу или на рост мышц

Если у вас нет конкретной цели и вы не знаете, как именно заниматься и что развивать, ознакомьтесь с основными особенностями тренировок на силу и гипертрофию.

Тренировки, направленные на рост мышц, обеспечат вам великолепное тело, если вы, конечно, правильно подберёте программу и наладите питание. Вот что нужно о них знать:

  • Поскольку вы будете работать с небольшими весами, тренировки относительно безопасны для суставов, подходят для людей любого возраста и физического развития.
  • Вы будете часто менять упражнения и способы их исполнения, пробовать новые методы тренировок. Это особенно важно для тех, кому быстро всё надоедает.
  • Поскольку для роста мышц необходим большой тренировочный объём, вам придётся провести в зале немало времени.

Если же ваша профессиональная или спортивная деятельность связана с серьёзными физическим нагрузками, делайте выбор в пользу тренировок на силу. С их помощью вы увеличите объём мышц, хоть и не так значительно, а также научитесь двигаться более эффективно и меньше уставать. Вот чем отличаются эти тренировки:

  • Вам не придётся выполнять столько упражнений, как в тренировке на гипертрофию, да и сами подходы будут короче из-за небольшого количества повторений.
  • Вы будете в основном чередовать рабочие веса — список упражнений будет меняться незначительно.
  • Нагрузка на суставы повысится, нужно будет много времени уделять освоению техники и разминке, чтобы избежать травм. В идеале на развитие силы надо тренироваться под руководством инструктора, особенно на первых порах, пока вы не знакомы с техникой.

Если у вас нет конкретной цели, можно создать смешанную программу и чередовать тренировки на силу и гипертрофию. В таком случае вы получите все преимущества и снизите риск травм.

Читайте также 🧐

Сила мышц

Определение силы

Физическая сила человека - это способность двигать груз, преодолевая сопротивление. Грузом может быть чье-то тело, лопата со снегом, гантель с дисками или любые другие предметы. Сопротивлением обычно выступает сила притяжения Земли, которую невозможно отделить от груза, потому что вес груза определяется как количество силы, которое необходимо, чтобы оторвать этот груз от центра Земли. Есть и другие формы сопротивления, не связанные с силой притяжения, такие, как, например, упругое сопротивление, которое можно преодолеть, растягивая пружину, или сопротивление трения, которое преодолевается, когда везешь сани.

Cуществует много форм силы мышц, каждая специфична для какой-то особой функции:

Многие факторы способствуют развитию физической силы мышц человека, и не все они связаны с мускулатурой. К примеру, если у вас короткие конечности (руки и ноги), то это может помочь вам в выполнении определенных силовых задач, потому что таким образом расстояние переноса груза будет меньше. Например, длинные ноги и руки ставят в невыгодное положение, когда выполняется жим лежа или приседания со штангой (но, эти свойства помогают при выполнении становой тяги).

Для повышения силовых показателей активно применяется спортивная фармакология, эргогенные средства и спортивное питание.

Два основных свойства, от которых зависит сила мышц, — это площадь поперечного сечения мускулов и нервно-мышечная эффективность. Площадь поперечного сечения мускулов отвечает за плотность мускулов. Обычно чем плотнее становится мускул, тем он способен проявить больше силы. Отчасти это из-за того, что у более плотных мускулов более плотное мышечное волокно, а в более плотных мышечных волокнах обычно содержится больше сократительного белка, который представляет собой основной механизм сокращения мышц. Увеличивать количество сократительного белка в мышечных волокнах — это все равно что добавлять еще одного человека со своей стороны при перетягивании каната.

Нервно-мышечная эффективность

Нервно-мышечная эффективность — в широком смысле это понятие приводит нас к пониманию сочетания мыслительных процессов и мышечной силы. Любое сокращение мышц начинается с мозга. Та часть в вашей голове, которая называется «двигательный центр», посылает электрический сигнал по позвоночнику и дальше по двигательным нервам в мышечные волокна, благодаря чему они начинают сокращаться. Спортивные тренировки ведут к таким изменениям в системе, которые дают возможность мускулам сокращаться быстрее, используя больше силы и более эффективно. Если вы представите ваш мозг в роли сержанта-инструктора по строевой подготовке, который отдает приказания взводу мышечных волокон, чтобы они начали сокращаться, то для вас подобный взгляд может оказать влияние, подобное увеличению громкости команд от шепота до крика.

Развитие нервно-мышечной активности происходит независимо от роста мышц. Вот почему вы никогда не можете сказать наверняка, насколько силен какой-либо человек, руководствуясь размером его мышц. Человек с относительно небольшими мускулами и высоким уровнем нервно-мышечной активности с большей вероятностью сможет победить человека с большими мускулами и низким уровнем нервно-мышечной активности.

В идеале тренировки на увеличение площади поперечного сечения мускулов отличаются от тренировок на повышение нервно-мышечной активности. Если вы новичок, то, скорее всего, вы не заметите этой разницы и любой вид тренировок поможет вам как увеличить размеры мускулов, так и повысить нервно-мышечную активность. Увеличивая количество упражнений или вес штанги, вы продолжите развивать площадь поперечного сечения ваших мускулов, а также повышать нервно-мышечную активность. Хотя, становясь более опытным, вы придете к выводу, что это просто невозможно найти такой вид тренировок, который бы увеличил размеры и силу мускулов одновременно. На самом деле вы не можете увеличить количество упражнений и вес штанги одновременно. Если вы хотите увеличить объем ваших тренировок, вам неминуемо придется ограничить количество веса, который вы поднимаете, таким обра

Работа и сила мышц | Компетентно о здоровье на iLive

Основное свойство мышечной ткани, образующей скелетные мышцы, - сократимость приводит к изменению длины мышцы под влиянием нервных импульсов. Мышцы действуют на кости рычагов, соединяющихся при помощи суставов. При этом каждая мышца действует на сустав только в одном направлении. У одноосного сустава (цилиндрического, блоковидного) движение костных рычагов совершается только вокруг одной оси, поэтому мышцы располагаются по отношению к такому суставу с двух сторон и действуют на него в двух направлениях (сгибание - разгибание; приведение - отведение, вращение). Например, у локтевого сустава одни мышцы - сгибатели, другие - разгибатели. Друг по отношению к другу эти мышцы, действующие на сустав в противоположных направлениях, являются антагонистами. Как правило, на каждый сустав в одном направлении действуют две или более мышц. Такие содружественные по направлению действия мышцы называют синергистами. У двуосного сустава (эллипсоидный, мыщелковый, седловидный) мышцы группируются соответственно двум его осям, вокруг которых совершаются движения. К шаровидному суставу, имеющему три оси движения (многоосный сустав), мышцы прилежат с нескольких сторон и действуют на него в разных направлениях. Так, например, у плечевого сустава имеются мышцы - сгибатели и разгибатели, осуществляющие движение вокруг фронтальной оси, отводящие и приводящие - вокруг сагиттальной оси и вращатели - вокруг продольной оси (вовнутрь - пронаторы и кнаружи - супинаторы).

В группе мышц, выполняющих то или иное движение, можно выделить мышцы главные, обеспечивающие данное движение, и вспомогательные, о подсобной роли которых говорит само название. Вспомогательные мышцы моделируют движение, придают ему индивидуальные особенности.

Для функциональной характеристики мышц используются такие показатели, как их анатомический и физиологический поперечник. Анатомический поперечник - это величина (площадь) поперечного сечения, перпендикулярного длиннику мышцы и проходящего через брюшко в наиболее широкой его части. Этот показатель характеризует величину мышцы, ее толщину. Физиологический поперечник мышцы представляет собой суммарную площадь поперечного сечения всех мышечных волокон, входящих в состав исследуемой мышцы. Поскольку сила сокращающейся мышцы зависит от количества мышечных волокон, величины поперечного сечения, то физиологический поперечник мышцы характеризует ее силу. У мышц веретенообразной, лентовидной формы с параллельным расположением волокон анатомический и физиологический поперечники совпадают. Иная картина у перистных мышц, имеющих большое количество коротких мышечных пучков. Из двух равновеликих мышц, имеющих одинаковый анатомический поперечник, у перистой мышцы физиологический поперечник больше, чем у веретенообразной. Суммарное поперечное сечение мышечных волокон у перистой мышцы больше, а сами волокна короче, чем у веретенообразной. В связи с этим перистая мышца по сравнению с последней обладает большей силой, однако размах сокращения ее коротких мышечных волокон меньше. Перистые мышцы имеются там, где необходима значительная сила мышечных сокращений при сравнительно небольшом размахе движений (мышцы голени, стопы, некоторые мышцы предплечья). Мышцы веретенообразной, лентовидной формы, построенные из длинных мышечных волокон, при сокращении укорачиваются на большую величину. В то же время они развивают меньшую силу, чем перистые мышцы, имеющие одинаковый с ними анатомический поперечник.

Работа мышц. Поскольку концы мышцы прикреплены на костях, то точки ее начала и прикрепления при сокращении приближаются друг к другу, а сами мышцы при этом выполняют определенную работу. Таким образом, тело человека или его части при сокращении соответствующих мышц изменяют свое положение, приходят в движение, преодолевают сопротивление силы тяжести или, наоборот, уступают этой силе. В других случаях при сокращении мышц тело удерживается в определенном положении без выполнения движения. Исходя из этого, различают преодолевающую, уступающую и удерживающую работу мышц.

Преодолевающая работа мышц выполняется в том случае, если сила сокращения мышцы изменяет положение части тела, конечности или ее звена, с грузом или без него, преодолевая силу сопротивления.

Уступающей называют работу, при которой сила мышцы уступает действию силы тяжести части тела (конечности) и удерживаемого ею груза. Мышца работает, однако она не укорачивается при этом, а, наоборот, удлиняется; например, когда невозможно поднять или удержать на весу предмет, имеющий большую массу. При большом усилии мышц приходится опустить это тело на пол или на другую поверхность.

Удерживающая работа выполняется, если силой мышечных сокращений тело или груз удерживается в определенном положении без перемещения в пространстве. Например, человек стоит или сидит, не двигаясь, или держит груз в одном и том же положении. Сила мышечных сокращений уравновешивает массу тела или груза. При этом мышцы сокращаются без изменения их длины (изометрическое сокращение).

Преодолевающую и уступающую работу, когда сила мышечных сокращений перемещает тело или его части в пространстве, можно рассматривать как динамическую работу. Удерживающая работа, при которой движения всего тела или части тела не происходит, является работой статической.

Кости, соединенные суставами, при сокращении мышц действуют как рычаги. В биомеханике выделяют рычаг первого рода, когда точки сопротивления и приложения мышечной силы находятся по разные стороны от точки опоры, и рычаг второго рода, в котором обе силы прилагаются по одну сторону от точки опоры, на разном расстоянии от нее.

Рычаг первого рода двуплечий носит название «рычаг равновесия». Точка опоры располагается между точкой приложения силы (сила мышечного сокращения) и точкой сопротивления (сила тяжести, масса органа). Примером такого рычага может служить соединение позвоночника с черепом. Равновесие достигается при условии, если вращающий момент прилагаемой силы (произведение силы, действующей на затылочную кость, на длину плеча, которая равна расстоянию от точки опоры до точки приложения силы) равен вращающему моменту силы тяжести (произведение силы тяжести на длину плеча, равную расстоянию от точки опоры до точки приложения силы тяжести).

Рычаг второго рода одноплечий. В биомеханике (в отличие от механики) он бывает двух видов. Вид такого рычага зависит от места расположения точки приложения силы и точки действия силы тяжести, которые и в том, и в другом случае находятся по одну сторону от точки опоры. Первый вид рычага второго рода (рычаг силы) имеет место в том случае, если плечо приложения мышечной силы длиннее плеча сопротивления (силы тяжести). Рассматривая в качестве примера стопу, можно видеть, что точкой опоры (ось вращения) служат головки костей плюсны, а точкой приложения мышечной силы (трехглавой мышцы голени) является пяточная кость. Точка сопротивления (тяжесть тела) приходится на место сочленения костей голени со стопой (голеностопный сустав). В этом рычаге отмечаются выигрыш в силе (плечо приложения силы длиннее) и проигрыш в скорости перемещения точки сопротивления (ее плечо короче). У второго вида одноплечевого рычага (рычага скорости) плечо приложения мышечной силы короче, чем плечо сопротивления, где приложена противодействующая сила, сила тяжести. Для преодоления силы тяжести, точка приложения которой отстоит на значительном расстоянии от точки вращения в локтевом суставе (точка опоры), необходима значительно большая сила мышц-сгибателей, прикрепляющихся вблизи от локтевого сустава (в точке приложения силы). При этом наблюдаются выигрыш в скорости и размахе движения более длинного рычага (точка сопротивления) и проигрыш в силе, действующей в точке приложения этой силы.

Что такое мышечная сила? (с картинками)

Мышечная сила обычно определяется как способность создавать силу при заданной скорости движения. Один из пяти основных компонентов физической подготовки - наряду с мышечной выносливостью, гибкостью, сердечно-сосудистой системой и составом тела - мышечная сила обычно развивается с помощью силовых тренировок. Этот тип тренировки обычно направлен на стимулирование увеличения силы на различных физиологических уровнях. Сила может быть индикатором общего состояния здоровья или мерой прогресса во время тренировок с отягощениями или реабилитационных программ.Существует несколько методов проверки физической силы, включая использование определенных устройств или определение того, какой вес можно использовать во время определенных упражнений.

Иллюстрация мышечной системы человека.
Назначение мышц

Основное назначение скелетных мышц - генерирование силы либо для стабилизации и уравновешивания скелета, либо для движения.Мышечная сила создается сложной серией взаимодействий между нейронами, нуклеотидами, ионами и белковыми комплексами внутри мышцы. Уровень создаваемой силы может варьироваться не только между мышцами и группами мышц, но и в пределах диапазона движения каждой отдельной мышцы. Факторы, которые могут повлиять на мышечную силу, включают возраст, пол и уровень физической подготовки. Изо дня в день на уровень силы могут влиять питание, сон, душевное состояние и даже время суток.

Тренировки с отягощениями помогают развить мышечную силу.
Типы прочности

Мышечная сила может относиться как к изометрической силе, так и к динамической силе. Изометрическая сила - это мера того, сколько силы можно приложить к неподвижному объекту или фиксированному сопротивлению.Стоять в дверном проеме и прижимать руки наружу к раме - это пример использования изометрической силы. Этот тип силовых тренировок обычно чаще используется в реабилитационных клиниках, чем в фитнес-центрах, потому что он может помочь предотвратить атрофию неподвижной конечности. В спортивной среде изометрические тренировки чаще всего используются для преодоления слабых мест при определенном угле диапазона движений конечности.

Один из пяти показателей физической подготовки, мышечная сила, может быть увеличена с помощью силовых упражнений.
Концентрические и эксцентрические движения

Динамическую силу можно разделить на концентрические движения и эксцентрические движения. Концентрические движения - это движения, при которых мышца укорачивается по мере движения, например, мышца двуглавой мышцы, когда рука переходит от вытянутой к полностью согнутой в локтевом суставе.Эксцентрическое движение - это когда мышца удлиняется во время движения, например, бицепс, когда рука переходит от согнутой к полностью разогнутой. В отдохнувшей мышце эксцентрическая сила может быть на 40% больше, чем концентрическая сила.

Основное предназначение скелетных мышц - генерирование силы для стабилизации и уравновешивания скелета или для создания движения.
Измерение прочности

Устройство, называемое тензиометром, можно использовать для измерения изометрической прочности. Первоначально он был разработан для измерения прочности авиационных кабелей. Другое устройство, называемое динамометром, может проверять мышечную силу, оценивая силу, используемую для сжатия инструмента рукой или ногами.По этим измерениям можно приблизительно оценить общую мышечную силу. Также могут использоваться более высокотехнологичные устройства с использованием компьютеров и электропроводящих материалов.

В интересах простоты и легкости доступа наиболее популярным методом тестирования мышечной силы обычно является одноразовый максимальный тест.В этом тесте измеряется наибольший вес, который человек может переместить за одно повторение определенного упражнения. Хотя обычно это достаточно точная оценка мышечной силы, ее следует проводить с особой осторожностью. Выполненный неправильно или без соответствующей помощи, при необходимости, этот тип теста может представлять опасность серьезной травмы.

Сила мышц может меняться ежедневно в зависимости от питания, гидратации, уровня отдыха и психического состояния..

Мышечная сила: преимущества, упражнения и многое другое

Мышечная сила связана с вашей способностью перемещать и поднимать предметы. Он измеряется тем, сколько силы вы можете приложить и какой вес вы можете поднять за короткий период времени.

Примеры упражнений, которые развивают мышечную силу и мощность, включают тренировки с отягощениями, такие как тяжелая атлетика, упражнения с собственным весом и упражнения с отягощениями. Также доступны бег, езда на велосипеде и восхождение на холмы.

Прочтите, чтобы узнать больше о разнице между мышечной силой и мышечной выносливостью, а также о преимуществах мышечной силы, предостережениях и упражнениях.

Хотя мышечная сила и мышечная выносливость в чем-то схожи, у них есть некоторые ключевые различия. Мышечная сила определяется тем, сколько силы вы можете приложить или какой вес вы можете поднять. Для наращивания мышечной силы используются более тяжелые веса для меньшего количества повторений.

Под мышечной выносливостью понимается способность мышцы выдерживать повторяющиеся сокращения, преодолевая сопротивление, в течение длительного периода времени.

К занятиям, развивающим мышечную выносливость, относятся бег на длинные дистанции, езда на велосипеде или плавание, а также круговые тренировки и упражнения с собственным весом.Вы можете улучшить мышечную силу и выносливость, повторяя движения до изнеможения.

Мышечная сила улучшает общее состояние здоровья и повышает спортивную активность.

  • Крепкое тело позволяет выполнять движения и действия, требующие силы, не уставая.
  • Мышечная сила помогает поддерживать здоровую массу тела за счет сжигания калорий и улучшения композиции тела, которая представляет собой соотношение между жиром и мышцами.
  • Укрепление может также улучшить настроение и уровень энергии, способствуя здоровому сну.Это может повысить уверенность в себе, дать чувство выполненного долга и позволить вам добавить в свой распорядок фитнеса более сложные или напряженные занятия.
  • Развитие силы мышц помогает построить сильные и здоровые мышцы и кости. Это помогает выработать правильную осанку и уменьшить боли в спине.
  • У вас будет больше устойчивости, равновесия и гибкости, что снизит вероятность травм и падений.

Для наращивания мышечной силы, размера и мощности выполняйте упражнения и действия, которые заставят ваши мышцы работать сильнее, чем обычно.

Поскольку вы сосредоточены на том, чтобы стать сильнее, вы можете попытаться интенсифицировать упражнения, используя более тяжелые веса и увеличивая сопротивление тела, даже если это означает, что вы делаете меньше повторений.

Выполняйте эти упражнения не реже двух раз в неделю. Если у вас нет времени на более длительную тренировку, сделайте несколько подходов в течение дня.

Посмотрите это видео, чтобы продемонстрировать некоторые из следующих упражнений.

Приседания

Сядьте в кресло во время приседаний, чтобы облегчить это упражнение.Чтобы увеличить интенсивность, держите гантели или гриф на уровне груди.

Для этого

  1. Встаньте, поставив ступни чуть шире бедер.
  2. Медленно согните ноги в коленях, чтобы приседать.
  3. Пауза в этом положении перед возвращением в исходное положение.
  4. Сделайте 2–3 подхода по 8–12 повторений.

Сгибание рук на бицепс

Для этого упражнения вам понадобятся гантели или штанга.

Для этого

  1. Встаньте, ноги на ширине плеч, слегка согнув колени.
  2. Положите руки вдоль тела ладонями вверх.
  3. Прижмите локти к телу, медленно поднимая вес.
  4. Сделайте паузу, а затем медленно опустите руки в исходное положение.
  5. Сделайте 2–3 подхода по 8–12 повторений.

Модифицированные отжимания

Когда вы освоите форму этого упражнения, попробуйте выполнять стандартные отжимания с поднятыми коленями и вытянутыми за собой ступнями.

Для этого

  1. В положении на столе оторвите ноги от пола.
  2. Держите голову, шею и позвоночник на одной линии, медленно опускаясь к полу.
  3. Медленно вернитесь в исходное положение.
  4. Сделайте 2–3 подхода по 8–12 повторений.

Планка для предплечий

Эта разновидность планки - хороший вариант, если у вас есть проблемы с вашими запястьями.

Для этого

  1. Из положения стола вытяните ступни и ноги.
  2. Встаньте на предплечья, положив локти под плечи, а руки вытянуты.
  3. Совместите шею, позвоночник и бедра так, чтобы они находились на прямой линии с телом.
  4. Удерживайте это положение до 1 минуты.
  5. Сделайте это 2–3 раза.

Скручивания живота

Это упражнение нацелено на вашу спину и корпус, чтобы обеспечить стабильность и хорошую осанку.

Для этого

  1. Лягте на спину, скрестив пальцы у основания черепа.
  2. Согните ноги в коленях, чтобы ступни приблизились к низу спины.
  3. Медленно поднимите голову и лопатки от пола.
  4. Сделайте паузу на несколько счетов перед тем, как вернуться в исходное положение.
  5. Сделайте 2–3 подхода по 8–12 повторений.

Прыгающие домкраты

Это кардиоупражнение поможет улучшить сердечный ритм и перекачку крови, а также укрепит нижнюю часть тела.

Для этого

  1. Встаньте, ноги на ширине плеч, руки вдоль тела.
  2. Подпрыгните и расставьте ноги до упора.
  3. В то же время поднимите руки над головой, чтобы хлопнуть в ладоши.
  4. Перейти в исходное положение.
  5. Сделайте 2–3 подхода по 15–30 прыжков.

Соблюдайте осторожность при запуске программы укрепляющих упражнений, если вы новичок в упражнениях, имеете травмы или проблемы со здоровьем. Вот несколько советов, которые помогут вам избежать травм:

  • Начинайте медленно и постепенно увеличивайте интенсивность и продолжительность тренировок в течение нескольких недель.
  • Слушайте свое тело и остановитесь, если вам нужен перерыв или если вы почувствуете боль.
  • Дайте 1 день восстановления между проработавшими разные группы мышц.
  • Всегда используйте правильную форму и технику, чтобы получать максимальную пользу от тренировок.
  • Используйте устойчивые контролируемые движения, особенно если вы поднимаете тяжести.
  • Дайте себе время отдохнуть между подходами.
  • Будьте осторожны при проработке любой части тела, которая подвержена боли или травмам. Это может быть ваша шея, плечи, спина и суставы, такие как запястья, колени и лодыжки.
  • Избегайте одышки или задержки дыхания, которые могут вызвать повышение артериального давления. Для каждого движения выдыхайте при подъеме и вдыхайте при опускании.

Если это возможно, поговорите с персональным тренером, чтобы составить программу упражнений, если вы новичок в фитнесе или просто хотите получить мнение эксперта. Ваш тренер поможет вам создать и поддерживать мотивацию, необходимую для того, чтобы придерживаться своего распорядка упражнений и получать желаемые результаты.

Работа с профессионалом гарантирует, что вы будете выполнять упражнения правильно и эффективно.Они помогут вам не сбиться с пути, убедиться, что вы используете правильную технику, и продвигать упражнения по мере улучшения.

Если невозможно работать с профессионалом, найдите партнера по обучению. Вы можете помочь друг другу сохранить мотивацию и убедиться, что вы оба используете правильную технику.

Если вы заставите свои мышцы работать с большей нагрузкой, чем обычно, на регулярной базовой тренировке, это поможет вам развить мышечную силу.

Чтобы оставаться на уровне и достигать поставленных целей в фитнесе, очень важно разработать распорядок дня, который вам нравится.Меняйте его так часто, как хотите, чтобы не скучать и задействовать разные группы мышц.

Наряду с упражнениями с отягощениями и отягощениями, улучшите свои обычные занятия, такие как подъем по лестнице или ношение тяжелых сумок, для наращивания мышечной силы и выносливости.

Постарайтесь включить больше этих повседневных задач в свой распорядок дня, чтобы вы могли наслаждаться преимуществами сильного тела.

.

Магазин добавок и бесплатные тренировки

Меню

7-дневная поддержка клиентов
  • Живой чат
  • 1-800-537-9910

0

Корзина Счет Авторизоваться

Добро пожаловать

  • Мой счет
  • История заказов
  • Выйти
  • Хранить> ‹Назад Главная страница магазина

      Найти продукты

    • Сортировать по категориям › ‹Назад Просмотреть все категории

        Лучшие категории

      • Белок
      • Сжигание жира
      • Перед тренировкой
      • BCAA
      • Креатин
      • Протеиновые батончики
      • Одежда
      • Витамины
      • Аксессуары
    • Сортировать по брендам › ‹Назад Просмотреть все бренды

        Ведущие бренды

      • MuscleTech
      • Primeval Labs
      • MusclePharm
      • NOW Foods
      • AllMAX
      • Rule1
      • Cellucor
.

6 лучших добавок для набора мышечной массы

Мы включаем продукты, которые, по нашему мнению, будут полезны нашим читателям. Если вы покупаете по ссылкам на этой странице, мы можем получить небольшую комиссию. Вот наш процесс.

Если вы занимаетесь спортом регулярно, вы наверняка хотите быть уверены, что получаете от них максимум удовольствия.

Одним из важных преимуществ упражнений является набор мышц и силы. Наличие здорового количества мышц позволяет вам лучше всего работать во время тренировок и в повседневной жизни.

Три основных критерия должны соблюдаться для максимального набора мышц: есть больше калорий, чем вы сжигаете, потреблять больше белка, чем вы расщепляете, и программа упражнений, которая бросает вызов вашим мышцам (1, 2, 3).

Несмотря на то, что все эти критерии можно выполнить без приема пищевых добавок, некоторые добавки могут помочь вам в достижении ваших целей.

6 добавок, перечисленных ниже, могут помочь вам нарастить мышечную массу с помощью программы упражнений.

Креатин - это молекула, которая естественным образом вырабатывается в организме. Он обеспечивает энергией ваши мышцы и другие ткани.

Однако прием его в качестве пищевой добавки может увеличить содержание креатина в мышцах до 40% по сравнению с нормальным уровнем (4, 5, 6).

Это влияет на ваши мышечные клетки и работоспособность, способствуя увеличению мышечной массы. Фактически, большое количество исследований показывает, что креатин улучшает мышечную силу (7, 8, 9).

Это хорошие новости, если вы пытаетесь нарастить мышцы. Большая сила позволяет вам лучше работать во время упражнений, что со временем приводит к большему увеличению мышечной массы (10).

Креатин может также увеличивать содержание воды в мышечных клетках. Это может привести к небольшому набуханию ваших мышечных клеток и подаче сигналов для роста мышц (11).

Кроме того, эта добавка может повышать уровень гормонов, участвующих в росте мышц, таких как IGF-1 (12).

Более того, некоторые исследования показывают, что креатин может уменьшить расщепление белков в мышцах (13).

В целом, многие исследователи изучали креатиновые добавки и упражнения, и ясно одно - креатин может помочь увеличить мышечную массу (14, 15).

Креатин также был тщательно изучен и имеет выдающийся профиль безопасности (14).

Если вы ищете добавку, которая поможет вам нарастить мышцы, сначала подумайте о креатине.

Купите креатиновые добавки в Интернете.

Резюме: Креатин, вероятно, единственная лучшая добавка для набора мышечной массы
. Многие исследования подтвердили, что это может помочь увеличить мышечную массу.

Получение достаточного количества белка имеет решающее значение для набора мышечной массы.

В частности, для набора мышечной массы вам необходимо потреблять больше белка, чем ваше тело расщепляет естественными процессами (16).

Хотя можно получить весь необходимый белок из продуктов, богатых белком, некоторым людям это сложно.

Если это похоже на вас, вы можете подумать о приеме белковой добавки.

Существует множество различных протеиновых добавок, но некоторые из самых популярных - это сывороточный, казеиновый и соевый протеин. Другие белковые добавки содержат белок, выделенный из яиц, говядины, курицы или других источников (17).

Исследования показывают, что добавление дополнительного белка через добавки вызывает немного больший набор мышц у людей, которые тренируются, чем добавление дополнительных углеводов (18, 19, 20).

Однако наибольший эффект, вероятно, наблюдается у людей, которые не получают достаточного количества белка в своем обычном рационе.

На самом деле, некоторые исследования показывают, что потребление очень большого количества белковых добавок не помогает увеличить мышечную массу, если вы уже соблюдаете диету с высоким содержанием белка (21, 22, 23, 24).

Многие люди задаются вопросом, сколько белка нужно есть в день. Если вы ведете активный образ жизни, пытаясь нарастить мышцы, лучше всего употреблять 0,5–0,9 грамма белка на фунт (1,2–2,0 грамма на кг) веса тела (25, 26, 27).

Покупайте протеиновые добавки в Интернете.

Резюме: Потребление достаточного количества белка абсолютно необходимо для
оптимального набора мышечной массы. Однако, если вы получаете достаточно белка в своем рационе,
принимать белковые добавки не нужно.

Гейнеры - это добавки, которые помогут вам получать больше калорий и белка. Обычно их используют люди, которым сложно набрать мышечную массу.

Некоторым людям трудно нарастить мышечную массу даже при потреблении большого количества калорий и поднятии тяжестей (28).

Хотя калорийность добавок для набора веса варьируется, нередко они содержат более 1000 калорий на порцию.

Многие люди думают, что эти калории поступают из белка, так как он очень важен для наращивания мышечной массы. Однако большая часть калорий на самом деле поступает из углеводов.

На порцию этих высококалорийных добавок часто приходится 75–300 граммов углеводов и 20–60 граммов белка.

Хотя эти продукты могут помочь вам потреблять больше калорий, важно понимать, что в добавках для набора веса нет ничего волшебного.

Некоторые исследования физически неактивных взрослых показали, что резкое увеличение калорийности может увеличить мышечную массу, например мышечную, если вы потребляете достаточно белка (29).

Однако исследования взрослых, которые тренировались с отягощениями, показали, что прием добавки с гейнером может быть неэффективным для увеличения мышечной массы (28).

В целом, гейнеры рекомендуются только в том случае, если вы изо всех сил пытаетесь съесть достаточно еды и вам легче выпить коктейль для набора веса, чем есть больше настоящей еды.

Купите добавки для набора веса в Интернете.

Резюме: Гейнеры - это высококалорийные продукты, которые помогут вам потреблять больше калорий и белка. Однако они рекомендуются только в том случае, если
вам трудно получить достаточно калорий из пищи.

Бета-аланин - это аминокислота, которая снижает утомляемость и может повысить физическую работоспособность (30, 31).

Кроме того, бета-аланин может помочь увеличить мышечную массу, если вы выполняете программу упражнений.

Одно исследование показало, что прием 4 граммов бета-аланина в день в течение восьми недель увеличивал мышечную массу больше, чем плацебо, у борцов колледжа и футболистов (32).

В другом исследовании сообщалось, что добавление добавки бета-аланина к шестинедельной программе высокоинтенсивных интервальных тренировок увеличивало мышечную массу примерно на 0,45 кг больше, чем плацебо (33).

Хотя необходимы дополнительные исследования бета-аланина и набора мышечной массы, эта добавка может помочь поддерживать набор мышечной массы в сочетании с программой упражнений.

Купите добавки с бета-аланином в Интернете.

Резюме: Бета-аланин - это аминокислота, которая может улучшить производительность при упражнениях. Некоторые данные показывают, что он также может помочь увеличить мышечную массу в ответ на упражнение
, но требуется дополнительная информация.

5. Аминокислоты с разветвленной цепью

Аминокислоты с разветвленной цепью (BCAA) состоят из трех отдельных аминокислот: лейцина, изолейцина и валина.

Они содержатся в большинстве источников белка, особенно животного происхождения, таких как мясо, птица, яйца, молочные продукты и рыба.

BCAA критически важны для роста мышц и составляют около 14% аминокислот в ваших мышцах (34, 35).

Практически каждый ежедневно потребляет BCAA с пищей, но также очень популярно принимать BCAA в качестве добавок.

Небольшое количество исследований показало, что BCAA могут улучшить прирост мышц или уменьшить их потерю по сравнению с плацебо (36, 37).

Однако другие исследования показывают, что BCAA могут не приводить к большему увеличению мышечной массы у тех, кто выполняет программу упражнений (38).

Вполне вероятно, что добавки BCAA принесут вам пользу только в том случае, если вы не потребляете достаточно высококачественного белка в своем рационе.

Хотя они могут быть полезными, если ваша диета неадекватна, необходима дополнительная информация, прежде чем BCAA будут рекомендованы в качестве добавки для набора мышечной массы.

Покупайте добавки BCAA в Интернете.

Резюме: Аминокислоты с разветвленной цепью важны для роста мышц. Они содержатся во многих продуктах питания, и неясно, полезен ли их прием в качестве добавки
, когда вы уже потребляете достаточно белка.

Бета-гидрокси-бета-метилбутират (HMB) - это молекула, которая вырабатывается, когда ваше тело обрабатывает аминокислоту лейцин.

HMB отвечает за некоторые положительные эффекты белков и лейцина в рационе (39).

Это может быть особенно важно для уменьшения распада мышечных белков (40).

Хотя HMB естественным образом вырабатывается вашим организмом, прием его в качестве добавки позволяет повысить его уровень и может принести пользу вашим мышцам (40, 41).

Несколько исследований на ранее нетренированных взрослых показали, что прием 3–6 граммов HMB в день может улучшить прирост безжировой массы тела в результате силовых тренировок (42, 43, 44).

Однако другие исследования показывают, что аналогичные дозы HMB, вероятно, не эффективны для увеличения мышечной массы у взрослых, имеющих опыт силовых тренировок (45, 46, 47).

Это может означать, что HMB наиболее эффективен для тех, кто начинает заниматься физическими упражнениями или увеличивает их интенсивность.

Покупайте добавки HMB в Интернете.

Резюме: HMB может помочь увеличить мышечную массу у тех, кто
начинает программу силовых тренировок, но, похоже,
менее эффективен для тех, кто имеет опыт тренировок.

Некоторые другие добавки утверждают, что они увеличивают мышечную массу. К ним относятся конъюгированная линолевая кислота, бустеры тестостерона, глутамин и карнитин.

Однако доказательства неоднозначны.

  • Конъюгированная линолевая кислота
    (CLA):
    CLA относится к группе
    жирных кислот омега-6, которые оказывают на организм различные эффекты. Исследования CLA для набора мышечной массы
    дали неоднозначные результаты, и неясно, полезно ли это (48, 49, 50, 51).
  • Бустеры тестостерона: Добавки, повышающие уровень тестостерона, включают
    D-аспарагиновую кислоту, трибулус террестрис, пажитник, ДГЭА и ашвагандху. Вероятно,
    эти соединения полезны только тем, у кого низкий уровень тестостерона (52, 53, 54, 55, 56).
  • Глютамин и карнитин: Вероятно,
    они не эффективны для увеличения мышечной массы у
    активных людей молодого или среднего возраста. Однако исследования показали, что карнитин может иметь около
    преимуществ для мышечной массы у пожилых людей (57, 58, 59, 60).

Резюме: Многие виды добавок утверждают, что увеличивают мышечную массу,
, но мало доказательств того, что они эффективны для
здоровых, активных людей.

Добавки не могут обеспечить максимальный прирост мышц, если вам не хватает программ питания и упражнений.

Чтобы набрать мышечную массу, вам нужно потреблять достаточно калорий и белка, а также заниматься физическими упражнениями, в идеале с отягощениями. После того, как ваш режим питания и физических упражнений будет под контролем, вы можете подумать о пищевых добавках.

Креатин и протеиновые добавки, вероятно, являются наиболее эффективным выбором для набора мышечной массы, но для некоторых людей могут быть полезны и другие добавки.

.

Смотрите также

3