Структура скелетной мышцы


Скелетные мышцы. Группы скелетных мышц. Строение и функции скелетных мышц

Мышцы – одна из основных составляющих тела. Они основаны на ткани, волокна которой сокращаются под воздействием нервных импульсов, что позволяет телу двигаться и удерживаться в окружающей среде.

Мышцы располагаются в каждой части нашего тела. И даже если мы не знаем об их существовании, они все равно есть. Достаточно, например, первый раз сходить в тренажерный зал или позаниматься аэробикой – на следующий день у вас начнут болеть даже те мышцы, о наличии которых вы и не догадывались.

Они отвечают не только за движение. В состоянии покоя мышцы тоже требуют энергии, чтобы поддерживать себя в тонусе. Это необходимо для того, чтобы в любой момент определенная часть тела смогла ответить на нервный импульс соответствующим движением, а не тратила время на подготовку.

Чтобы понять, как устроены мышцы, предлагаем вспомнить основы, повторить классификацию и заглянуть в клеточное строение мышц. Также мы узнаем о болезнях, которые могут ухудшить их работу, и о том, как укрепить скелетную мускулатуру.

Общие понятия

По своему наполнению и происходящим реакциям мышечные волокна делятся на:

  • поперечно-полосатые;
  • гладкие.

Скелетные мышцы – продолговатые трубчатые структуры, количество ядер в одной клетке которых может доходить до нескольких сотен. Состоят они из мышечной ткани, которая прикреплена к различным частям костного скелета. Сокращения поперечно-полосатых мышц способствуют движениям человека.

Разновидности форм

Чем различаются мышцы? Фото, представленные в нашей статье, помогут нам в этом разобраться.

Скелетные мышцы являются одной из главных составляющих опорно-двигательной системы. Они позволяют двигаться и сохранять равновесие, а также задействованы в процессе дыхания, голосообразования и других функциях.

В организме человека насчитывается более 600 мышц. В процентном соотношении их общая масса составляет 40% от общей массы тела. Мышцы классифицируются по форме и строению:

  • толстые веретенообразные;
  • тонкие пластинчатые.

Классификация упрощает изучение

Деление скелетных мышц на группы осуществляется в зависимости от места нахождения и значения их в деятельности различных органов тела. Основные группы:

Мышцы головы и шеи:

  • мимические – задействуются при улыбке, общении и создании различных гримас, обеспечивая при этом движение составляющих частей лица;
  • жевательные – способствуют смене положения челюстно-лицевого отдела;
  • произвольные мышцы внутренних органов головы (мягкого неба, языка, глаз, среднего уха).

Группы скелетных мышц шейного отдела:

  • поверхностные – способствуют наклонным и вращательным движениям головы;
  • средние – создают нижнюю стенку ротовой полости и способствуют движению вниз челюсти, подъязычной кости и гортанных хрящей;
  • глубокие осуществляют наклоны и повороты головы, создают поднятие первого и второго ребер.

Мышцы, фото которых вы видите здесь, отвечают за туловище и делятся на мышечные пучки следующих отделов:

  • грудной – приводит в действие верхнюю часть торса и руки, а также способствует изменению положения ребер при дыхании;
  • отдел живота – дает движение крови по венам, осуществляет изменения положения грудной клетки при дыхании, воздействует на функционирование кишечного тракта, способствует сгибанию туловища;
  • спинной – создает двигательную систему верхних конечностей.

Мышцы конечностей:

  • верхние – состоят из мышечных тканей плечевого пояса и свободной верхней конечности, помогают двигать рукой в плечевой суставной сумке и создают движения запястья и пальцев;
  • нижние – играют основную роль при передвижении человека в пространстве, подразделяются на мышцы тазового пояса и свободную часть.

Строение скелетной мышцы

В своей структуре она имеет огромное количество мышечных волокон продолговатой формы диаметром от 10 до 100 мкм, длина их колеблется от 1 до 12 см. Волокна (микрофибриллы) бывают тонкими – актиновые, и толстыми – миозиновые.

Первые состоят из белка, имеющего фибриллярную структуру. Он называется актин. Толстые волокна состоят из различных типов миозина. Отличаются они по времени, которое требуется на разложение молекулы АТФ, что обуславливает разную скорость сокращений.

Миозин в гладких мышечных клетках находится в дисперсном состоянии, хотя имеется большое количество белка, который, в свою очередь, является многозначащим в продолжительном тоническом сокращении.

Строение скелетной мышцы похоже на сплетенный из волокон канат или многожильный провод. Сверху ее окружает тонкий чехол из соединительной ткани, называемый эпимизиум. От его внутренней поверхности вглубь мышцы отходят более тонкие разветвления соединительной ткани, создающие перегородки. В них «завернуты» отдельные пучки мышечной ткани, которые содержат до 100 фибрилл в каждом. От них еще глубже отходят более узкие ответвления.

Сквозь все слои в скелетные мышцы проникают кровеносная и нервная системы. Артериальная вена проходит вдоль перимизиума – это соединительная ткань, покрывающая пучки мышечных волокон. Артериальные и венозные капилляры располагаются рядом.

Процесс развития

Скелетные мышцы развиваются из мезодермы. Со стороны нервного желобка образуются сомиты. По истечении времени в них выделяются миотомы. Их клетки, приобретая форму веретена, эволюционируют в миобласты, которые делятся. Некоторые из них прогрессируют, а другие остаются без изменений и образуют миосателлитоциты.

Незначительная часть миобластов, благодаря соприкосновению полюсов, создает контакт между собой, далее в контактной зоне плазмалеммы распадаются. Благодаря слиянию клеток создаются симпласты. К ним переселяются недифференцированные молодые мышечные клетки, находящиеся в одном окружении с миосимпластом базальной мембраны.

Функции скелетных мышц

Эта мускулатура является основой опорно-двигательного аппарата. Если она сильна, тело проще поддерживать в нужном положении, а вероятность появления сутулости или сколиоза сводится к минимуму. О плюсах занятий спортом знают все, поэтому рассмотрим роль, которую играет в этом мускулатура.

Сократительная ткань скелетных мышц выполняет в организме человека множество различных функций, которые нужны для правильного расположения тела и взаимодействия его отдельных частей друг с другом.

Мышцы выполняют следующие функции:

  • создают подвижность тела;
  • берегут тепловую энергию, созданную внутри тела;
  • способствуют перемещению и вертикальному удержанию в пространстве;
  • содействуют сокращению дыхательных путей и помогают при глотании;
  • формируют мимику;
  • способствуют выработке тепла.

Постоянная поддержка

Когда мышечная ткань находится в покое, в ней всегда остается незначительное напряжение, называемое мышечным тонусом. Оно образуется из-за незначительных импульсных частот, которые поступают в мышцы из спинного мозга. Их действие обуславливается сигналами, проникающими из головы к спинным мотонейронам. Тонус мышц также зависит от их общего состояния:

  • растяжения;
  • уровня наполняемости мышечных футляров;
  • обогащения кровью;
  • общего водного и солевого баланса.

Человек обладает способностью регулировать уровень нагрузки мышц. В результате длительных физических упражнений либо сильного эмоционального и нервного перенапряжения тонус мышц непроизвольно увеличивается.

Сокращения скелетных мышц и их разновидности

Эта функция является основной. Но даже она, при кажущейся простоте, может делиться на несколько видов.

Виды сократительных мышц:

  • изотонические – способность мышечной ткани укорачиваться без изменений мышечных волокон;
  • изометрические – при реакции волокно сокращается, но его длина остается прежней;
  • ауксотонические – процесс сокращения мышечной ткани, где длина и напряжение мышц подвергнута изменениям.

Рассмотрим этот процесс более подробно

Сначала мозг посылает через систему нейронов импульс, которых доходит до мотонейрона, примыкающего к мышечному пучку. Далее эфферентный нейрон иннервируется из синоптического пузырька, и выделяется нейромедиатор. Он соединяется с рецепторами на сарколемме мышечного волокна и открывает натриевый канал, который приводит к деполяризации мембраны, вызывающей потенциал действия. При достаточном количестве нейромедиатор стимулирует выработку ионов кальция. Затем он соединяется с тропонином и стимулирует его сокращение. Тот, в свою очередь, оттягивает тропомеазин, позволяя актину соединиться с миозином.

Дальше начинается процесс скольжения актинового филамента относительно миозинового, вследствие чего происходит сокращение скелетных мышц. Разобраться в процессе сжатия поперечно-полосатых мышечных пучков поможет схематическое изображение.

Принцип работы скелетных мышц

Взаимодействие большого количества мышечных пучков способствует различным движениям туловища.

Работа скелетных мышц может происходить такими способами:

  • мышцы-синергисты работают в одном направлении;
  • мышцы-антагонисты способствуют выполнению противоположных движений для осуществления напряжения.

Антагонистическое действие мышц является одним из главных факторов в деятельности опорно-двигательного аппарата. При осуществлении какого-либо действия в работу включаются не только мышечные волокна, которые совершают его, но и их антагонисты. Они способствуют противодействию и придают движению конкретность и грациозность.

Поперечно-полосатая скелетная мышца при воздействии на сустав совершает сложную работу. Ее характер определяется расположением оси сустава и относительным положением мышцы.

Некоторые функции скелетных мышц являются недостаточно освещенными, и зачастую о них не говорят. Например, некоторые из пучков выступают рычагом для работы костей скелета.

Работа мышц на клеточном уровне

Действие скелетной мускулатуры осуществляется за счет двух белков: актина и миозина. Эти составляющие обладают способностью передвигаться относительно друг друга.

Для осуществления работоспособности мышечной ткани необходим расход энергии, заключенной в химических связях органических соединений. Распад и окисление таких веществ происходят в мышцах. Здесь обязательно присутствует воздух, и выделяется энергия, 33% из всего этого расходуется на работоспособность мышечной ткани, а 67% передается другим тканям и тратится на поддержание постоянной температуры тела.

Болезни мускулатуры скелета

В большинстве случаев отклонения от нормы при функционировании мышц обусловлены патологическим состоянием ответственных отделов нервной системы.

Наиболее распространенные патологии скелетных мышц:

  • Мышечные судороги – нарушение электролитного баланса во внеклеточной жидкости, окружающей мышечные и нервные волокна, а также изменения осмотического давления в ней, особенно его повышение.
  • Гипокальциемическая тетания – непроизвольные тетанические сокращения скелетных мышц, наблюдаемые при падении внеклеточной концентрации Са2+ примерно до 40% от нормального уровня.
  • Мышечная дистрофия характеризуется прогрессирующей дегенерацией волокон скелетных мышц и миокарда, а также мышечной нетрудоспособностью, которая может привести к летальному исходу из-за дыхательной либо сердечной недостаточности.
  • Миастения – хроническое аутоиммунное заболевание, при котором в организме образуются антитела к никотиновому ACh-рецептору.

Релаксация и восстановление скелетных мышц

Правильное питание, образ жизни и регулярные тренировки помогут вам стать обладателем здоровых и красивых скелетных мышц. Необязательно заниматься тяжелой атлетикой и наращивать мышечную массу. Достаточно регулярных кардиотренировок и занятий йогой.

Не стоит забывать про обязательный прием необходимых витаминов и минералов, а также регулярные посещения саун и бань с вениками, которые позволяют обогатить кислородом мышечную ткань и кровеносные сосуды.

Систематические расслабляющие массажи повысят эластичность и репродуктивность мышечных пучков. Также положительное воздействие на структуру и функционирование скелетных мышц оказывает посещение криосауны.

Строение, характеристики и группы скелетных мышц

На скелетной основе человеческого организма крепятся мышцы: большие и малые, главные и второстепенные. Без хорошо развитого, здорового мышечного комплекса человек будет лишен возможности двигаться, потому что именно мышцы отвечают даже за малейшие, незаметные движения. В теле человека количество скелетных мышц доходит до 400. Общая их масса у взрослого составляет 30–35 процентов от массы тела. Мышцы крепятся к скелету не в один слой, они могут быть глубокими и поверхностными, заходить друг на друга, создавать сложные перекрестья.

Каково строение скелетной мышцы?

1.      Мышечное волокно скелетной мышцы — это структура, в которой нельзя выделить отдельные клетки. Она образуется в результате слияния множества клеток, так что их стенки исчезают, а ядра свободно лежат в цитоплазме. В результате получается так называемый многоядерный симпласт. Внутри него имеются сократительные волоконца миофибриллы, построенные из белков актина, миозина, титина и других, которые в каждом волокне при тренировке и интенсивной мышечной работе увеличиваются в количестве. Именно благодаря этому растет объем скелетных мышц. Таким образом, сила мышцы зависит от количества в ней мышечных волокон. Грамотно выстроенная система тренировок ведет к увеличению объема мышц, бездеятельность разрушает волокна, приводит к атрофии.

2.      Мышечные волокна, работающие в одном направлении, собраны в пучки, каждый из которых окутан фасцией — тонкой оболочкой из соединительной ткани.

3.      Множество пучков составляют скелетную мышцу, которую снаружи тоже покрывает соединительнотканная фасция. Названия частей скелетной мышцы напоминают отделы тела какого-то зверька: брюшко (самая толстая часть), головка и хвост — здесь фасция переходит в сухожилия, крепящие мышцу к шероховатостям, бугоркам, прочим выростам на костях.

Характеристики скелетной мышцы

1.      Сократимость — мышца может изменять поперечный размер: она уменьшается в длину, при этом увеличиваясь в толщину.

2.      Растяжимость — мышца способна увеличивать длину, уменьшаясь в толщину.

3.      Возбудимость (раздражимость) — мышечная и нервная ткань способна как воспринимать раздражение, так и реагировать на него. Напомним, что возбудимость характерна для любой клетки.

4.      Эластичность — после сокращения мышца возвращается в прежнее положение и приобретает изначальный размер.

Основные группы мышц

1.      Мышцы головы и шеи. Среди них можно назвать жевательные мышцы, крепящиеся к костям черепа одним концом, а противоположным — к нижней челюсти. Мимические мышцы — крепятся к лицевой части черепа и к поверхности кожи. А вот круговые мышцы глаз вовсе не прикреплены к костям.

2.      Мышцы спины. Примеры — широчайшая и трапециевидная мышцы. Обеспечивают движения головы, лопаток, наклоны и повороты шеи, помогают поднимать и опускать руки, поддерживают человека в вертикальном положении.

3.      Мышцы груди. Первая группа присоединяется к костям плечевого пояса и рук, обеспечивает их двигательную активность. Вторая группа — межреберные мышцы, которые отвечают за колебательные движения ребер при дыхании.

4.      Мышцы живота. Брюшной пресс образует стенки живота, выполняет двигательную и защитную функции. Диафрагма — ее главная функция: участие в дыхательных движениях.

5.      Мышцы плечевого пояса и руки отвечают за движения руки и ее отделов, участвуют в мелких сложных операциях. Примеры мышц плечевого пояса: дельтовидная, большая круглая, подлопаточная. Мышцы руки: плечевая, локтевая, длинная ладонная.

6.      Мышцы тазового пояса и ноги ответственны за подвижность бедра и голени. Икроножная мышца — самая массивная скелетная мышца. Сюда относятся ягодичные мышцы. Мышцы голени двигают стопу, мышцы стопы отвечают за сгибание и разгибание пальцев ног.

Функции мышц

Скелетные мышцы двигают костями в суставах. По функциям, то есть по направлению сокращений, они делятся на следующие пять основных групп:

1.      Сгибатели (например, бицепс).

2.      Разгибатели (трицепс).

3.      Приводящие сустав (широчайшая мышца спины).

4.      Отводящие сустав (ягодичная, дельтовидная мышцы).

5.      Вращатели сустава — мышцы вращения внутрь (пронаторы), мышцы вращения наружу (супинаторы). Так, пронатор — круглая мышца плеча. Супинатор — портняжная мышца.

Как мы понимаем, мышцы могут осуществлять совместные движения, а могут «тянуть» в разные стороны. Поэтому различают мышцы синергисты, которые вместе и дружно участвуют в движении сустава (например, плечевая мышца и бицепс) и антагонисты — они двигают сустав в противоположном направлении (например, антагонисты в локтевом суставе: двуглавая мышца сгибает, а трехглавая разгибает).

Хочешь сдать экзамен на отлично? Жми сюда - репетитор онлайн по биологии (ЕГЭ)

Структура и функция скелетной мышцы — Студопедия

Скелетная мышца образована мышечными волокнами. Мышечное волокно снаружи покрыто мембраной – сарколеммой, внутри располагаются ядра, сократительный аппарат волокна – миофибриллы, пространство между ними заполнено саркоплазмой, в которой находятся кислородосвязывющий белок миоглобин, КрФ, гликоген, жири пр. В мышечном волокне от 100 до 1000 миофибрилл. Миофибриллы – нити, построенные из сократительных белков актина и миозина. В одном грамме скелетной мускулатуры около 100 мг сократительных белков. Актин и миозин располагаются в миофибриллах в виде тонких (актин) и толстых (миозин) нитей - филаментов. Под микроскопом можно видеть чередующиеся светлые и темные поперечные полосы, которые обусловлены чередованием нитей актина (светлые) и миозина (темные).

Миофибриллы состоят из повторяющихся участков, отделенных друг от другаZ-линиями(дисками) - саркомеров. Саркомер - структурная единица мышечного волокна.

В покоящейся мышце концы толстых и тонких нитей лишь слабо перекрываются.Сокращение мышцы происходит за счет втяжения актиновых нитей между миозиновыми (теория скользящих нитей). При этом белковые нити не укорачиваются. При растяжении мышцы длина нитей также не увеличивается, атиновые нити просто вытягиваются из промежутков между миозиновыми.


Миозиновые нити несут поперечные выступы (мостики) с миозиновыми головками (150 молекул в головке). Поперечные мостики могут связывать миозиновую нить с соседней актиновой. За счет них проиходит скольжение.

Типы сокращений мышц

При сближении актиновых и миозиновых фибрилл вследствие замыкания поперечных мостиков в мышечном волокне развивается напряжение (активная механическая тяга). В зависимости от условий, в которых происходит сокращение мышц, развивающееся напряжение реализуется по разному. Различают два основных типа мышечных сокращений — изотонический и изометрический.

Изотоническое - это свободное сокращение, при котором мышца не испытывает сопротивления. Возможно только в эксперименте. В организме мышцам, осуществляющим движение всегда оказывается сопротивления, находящимися в тонусе мышцами - антагонистами.

Изометрическое (греч. isos — равный, meros — мера) — это сокращение, при котором длина волокон не уменьшается, но их напряжение возрастает (сокращение при неизменной длине). С молекулярной точки зрения напряжение при изотоническом сокращении обеспечивается замыканием и размыканием поперечных мостиков.


При изотоническом сокращении движение головок создает объединенное усилие "гребок", продвигающий актиновые нити в середину между миозиновыми. Биполярное расположение миозиновых головок обеспечивает встречное движение актиновых нитей. Для перемещения на 20% от исходной длины гребковые движения должны быть совершены 20 раз. За счет ритмичных движений (отделений и повторных прикреплений миозиновых головок) происходит перемещение актиновых нитей как при вытягивании веревки. При расслаблении мышцы миозиновые головки отделяются от актиновых нитей и расслабление происходит пассивно.

При изометрическом сокращении миозиновая головка мостика, прикрепленная к актиновой нити под прямым углом, наклоняется под углом 45 градусов, в результате создается упругое натяжение, как при перетягивании каната. Даже при изометрическом сокращении сокращении поперечные мостики не находятся в непрерывном напряжении (только при трупном окоченении). Каждая миозиновая головка многократно отделяется и снова прикрепляется к актиновой нити.При изометрическом же сокращении напряжение в мышечных волокнах создается за счет повторного прикрепления поперечных мостиков на одних и тех же фиксированных участках актиновых нитей. При этом сила сокращения зависит от числа замкнутых мостиков, образуемых в единицу времени.

В естественных условиях деятельности мышц практически не встречается чисто изотоническое или чисто изометрическое сокращение. Смешанный тип сокращения мышц, при котором изменяются длина и напряжение, называется ауксотоническим. При совершении сложных двигательных актов все работающие мышцы сокращаются ауксотонически — с преобладанием либо изотонического, либо изометрического типа сокращения.

АТФ является непосредственным источником энергии для сокращения.Все другие источники энергии не участвуют непосредственно в мышечном сокращении, а лишь необходимы для постоянного воспроизводства (ресинтеза) АТФ. АТФ расщепляется до АДФ и фосфата с выделением энергии при помощи фермента - АТФазы миозина , процесс этот активируется актином. Миозиновые головки содержат активные центры для расщепления АТФ, которое происходит лишь в случае прикрепления миозиновой головки к актину, при этом происходит их отделение. В каждом цикле прикрепления-отделения происходит одно расщепление АТФ. Скорость мышечного сокращения и скорость расщепления АТФ зависят от количества "гребков", сделанных мостиками. Чем выше скорость, тем больше движений и энергетических затрат. В результате БС волокна потребляют больше АТФ, чем медленные. Поэтому для поддержания позы используются преимущественно МС волокна.

Мышца сокращается в ответ на команды, поступающие от мотонейронов, расположенных в передних рогах спинного мозга. Мотонейрон и иннервируемые им мышечные волокна составляют двигательную единицу. Каждая мышца включает множество ДЕ, которые могут отличаться друг от друга по строению и функции.

Скелетные мышцы - особенности строения, классификация и функции в организме

Особенности строения

Скелетные мышцы состоят из множества мышечных волокон или симпластов, которые объединяются в пучки. Из них составляются двигательные единицы, объединённые общей интеграцией с нервной системой. В одной из них может содержаться от 3—5 (глаза) до 1,5—2,5 тысяч (камбаловидная мышца) волокон, объединённых одинаковыми свойствами и управляемыми общим моторным нейроном.

Симпласты представляют собой огромные многоядерные клетки, имеющие форму вытянутой нити с заострёнными краями. Их длина достигает до 14 см при диаметре всего в несколько сотых долей миллиметра. Клетки защищены внешней оболочкой под названием «сарколемма» и объединены друг с другом соединительной тканью. Эта рыхлая субстанция не только поддерживает целостность структуры, но и содержит сосуды, лимфатические узлы и нервные волокна, обеспечивающие связь с остальным организмом.

Моторные единицы образуют пучки, а затем объединяются в целые мышцы, окружённые плотным мешочком соединительной ткани. Концами они крепятся к сухожилиям, соединённым со скелетом. Нервные импульсы, проходящие сквозь мышечное волокно, приводят в движение и кости. Мотонейроны проходят весь путь к ним из спинного мозга через разветвлённую сеть аксонов. Важно отметить, что они имеют возможность активировать не всю мышцу, а отдельную группу волокон. Это позволяет регулировать силу и скорость сокращений, в зависимости от приложенных усилий и нагрузки.

Механизм сокращения

Способность сокращаться обеспечивает работу скелетных мышц и их регуляцию, позволяя им выполнять свою функцию в организме. Процесс происходит за счёт работы специальных сократительных блоков, содержащихся в волокне. Он происходит следующим образом:

  • Мозг посылает соответствующий импульс для начала сокращения. Через нервную систему он доходит до двигательного нейрона, соединённого с мышечным пучком.
  • Происходит иннервация нейрона из синоптического пузырька. В результате выделяется особое вещество — нейромедиатор. Это биологически активная субстанция, способная передавать электрохимические импульсы от нервных клеток к тканям.
  • Нейромедиатор активирует рецепты на внешней оболочке мышечного волокна. В результате открывается натриевый канал, мембрана деполяризуется и возникает потенциал действия.
  • Стимулируется выработка ионов кальция, которые вступают в реакцию с особым белком тропонином, стимулируя его сокращение.
  • Вещество оттягивает цепи тропомиозина, открывая доступ актина к миозину и давая им возможность соединиться. Из-за деятельности этих элементов происходят сократительные движения волокон.

Множество мышечных пучков двигаются одновременно. В зависимости от характера этих движений, части тела перемещаются по-разному. Мышцы-синергисты работают в одном направлении, задавая скорость, силу и направления движения. Мускулы-антагонисты действуют противоположно друг другу, отвечая за появление напряжения и противодействия, создавая грацию и направленность. По типу самих сокращений мышцы делятся на три типа:

  • Изотонические — укорачиваются без изменений напряжения волокон.
  • Изометрические — сокращаются, не меняя длины.
  • Ауксотонические — меняют длину и напряжение при работе.

Взаимодействие всех видов сокращений обеспечивает разнообразие движений, которые совершает человек. Он может контролировать не только их направленность, но и скорость, плавность, направленную силу, напряжение.

Классификация и виды

В анатомии и физиологии различают несколько основных групп скелетных мышц. Они отличаются расположением и выполняемыми функциями. Главные из них:

  • Грудные. Отвечают за движения верхней части туловища, плечей и рук. Изменяют положение рёбер при дыхании.
  • Спинные. Часть двигательной системы верхних конечностей. Позволяют выгибать тело назад.
  • Мышцы живота. Дают возможность наклоняться. Частично регулируют работу желудочно-кишечного тракта и кровеносной системы. Изменяют расположение грудной клетки во время дыхания.
  • Мимические. Входят в состав мускулатуры головы. Обеспечивают движение составляющих лица, отвечая за улыбку, нахмуривание, создание различных выражений и гримас. Необходимы при общении и выражении чувств.
  • Жевательные. Отвечают за движения верхней и нижней челюсти, позволяя человеку открывать и закрывать рот. Помимо основной функции (жевания пищи), это необходимо для формирования членораздельной речи.
  • Мышцы внутренних органов головы. Отвечают за движения глаз, языка, среднего уха, нёба.
  • Поверхностные мышцы шейного отдела. Помогают в регуляции наклона головы, осуществлении вращательных движений шеи.
  • Мускулы среднего отдела шеи. Расположены на нижней стенке ротовой полости. Нужны для движений гортани, подъязычных тканей, нижней челюсти.
  • Глубокие мышцы шеи. Отвечают за наклоны и повороты головы совместно с поверхностной мускулатурой. Кроме того, нужны для регуляции движений первого и второго рёбер при дыхании и нагрузках.
  • Мускулатура верхних конечностей. Включают плечевой пояс и непосредственно ткани рук. Отвечают за сгибание-разгибание локтей, позволяют двигать запястьем, кистью и пальцами.
  • Мышцы нижних конечностей. Включают мускулатуру таза и свободные ткани ног и стоп. Играют важную роль при ходьбе, изменении положения тела в пространстве. Участвуют также в сгибании позвоночного столба.

Помимо расположения, мышцы также классифицируют по функциям — сгибающие, разгибающие, приводящие, отводящие, вращательные и так далее. В таблице П. Ф. Лесгафта они делятся также на сильные и ловкие. Первые крепятся к большой поверхности короткими волокнами, обладают небольшим физиологическим поперечником, медленно утомляются. Вторые отличаются большой длиной при маленькой площади крепления, действуют с сильным напряжением и устают быстро.

Отличительные свойства

Все виды мышц обладают несколькими функциональными особенностями, обеспечивающими их нормальную работу. Некоторые из них:

  • Возбудимость. Защитная мембрана мышечных клеток воспринимает нервный импульс. Мускулы отвечают на него возбуждением, производя определённую биоэлектрическую активность.
  • Проводимость. Мышечные клетки могут создавать и проводить местные токи и потенциалы действия. Они распространяются вдоль волокна и вглубь мембранных трубок со скоростью около 3—5 м/с.
  • Сократимость. Волокна увеличивают или уменьшаю свою длину и напряжение, в зависимости от состояния мембраны. Особенность обусловлена взаимодействием специализированных белков на молекулярном уровне.
  • Вязкоэластические свойства. Нужны для расслабления и отдыха скелетной мускулатуры.
  • Растяжимость и эластичность. Мышцы увеличиваются в длину под действием достаточной растягивающей или деформирующей силы, но быстро возвращаются к первоначальной форме после его прекращения или приостановки.
  • Сила и способность совершать работу. Зависит от длины и толщины волокон, числа и синхронности взаимодействия двигательных единиц. Увеличивается с повышением массы груза, но только до определённого предела.
  • Утомляемость. Мускулы не могут работать постоянно — им необходимы перерывы, иначе работоспособность снижается. Это обусловлено ограниченностью энергетических запасов — АТФ, гликогена, глюкозы. Играет роль также накопление вредных метаболитов. Помимо самой мышцы, может утомляться синапс — механизм передачи импульсов от нерва к мускулатуре. Это называется ложной мышечной усталостью.

К отличительным чертам мышц относится также способность поддерживать тонус — небольшое напряжение даже при отсутствии нагрузок. Он непроизвольно увеличивается при нагрузках, стрессах, сильных эмоциях. Выраженность тонуса зависит от общего состояния мускулатуры — наполненности футляров, растяжения, уровня водно-солевого баланса, обогащённости тканей кровью и лимфой.

Функции в организме

Скелетные мышцы — одна из основ тела человека, составляющая от 40 до 50% его массы. Они формируются у ребёнка ещё на стадии внутриутробного развития и растут до окончания полового созревания, после чего могут увеличиваться или уменьшаться на протяжении всей жизни, в зависимости от физических нагрузок, питания, образа жизни, состояния здоровья и других факторов. Значение волокон в организме:

  • Изменение положения человека в пространстве.
  • Перемещение различных частей тела относительно друг друга.
  • Поддержание организма в одной позе.
  • Обеспечение выполнения жизненно важных функций, таких как глотание и дыхание.
  • Выработка энергии при сокращении — она расходуется на терморегуляцию и поддержание постоянной температуры.
  • Сохранение запасов воды, солей, белков и других необходимых веществ в тканях.
  • Формирование мимики и голоса, необходимых для общения.

Дополнительная функция скелетных мышц — защита. Вместе с кожей и жировой тканью они прикрывают кости, органы и другие жизненно важные структуры организма, оберегая их от различных механических воздействий — ударов, падений, столкновений, порезов.

Здоровье мышц

Поддержание здоровья скелетной мускулатуры необходимо для улучшения общего самочувствия и физической формы. Большинство нарушений в работе мышц обусловлено заболеваниями связанных отделов нервной системы, патологиями обмена веществ, а также травмами и несчастными случаями. Распространённые болезни:

  • Мышечные спазмы или судороги. Возникают по таким причинам, как сбои в электролитном балансе внутриклеточной жидкости симпластов и повышение или понижение осмотического давления в ней. Кроме того, являются симптомом множества заболеваний и патологических состояний — от кровопотери и авитаминоза до столбняка или эпилепсии.
  • Гипокальциемический кризис или тетания. Болезнь, возникающая от серьёзного (падение до 40% от нормального числа или меньше) дефицита положительных ионов кальция во внеклеточном пространстве. Проявляются непроизвольными и длинными сокращениями скелетной мускулатуры.
  • Мышечная дистрофия. Приводит к стойкой и продолжительной дегенерации тканей. Поражает не только опорно-двигательный аппарат, но и мускулатуру внутренних органов, отчего может привести к смерти от дыхательной или сердечной недостаточности при отсутствии немедленного квалифицированного лечения.
  • Миастения. Аутоиммунное заболевание, при котором организм воспринимает свои клетки как чужие и начинает уничтожать их. Характеризуется образованием антител к никотиновому ацетилхолиновому рецептору, который отвечает за передачу нервного импульса от спинного мозга к мышце через синапс.

Чтобы избежать заболеваний и патологий скелетной мускулатуры, необходимо поддерживать её здоровье при помощи правильного питания и регулярных тренировок с умеренными физическими нагрузками. В качестве дополнительных мер рекомендуется массаж, посещение бань и саун, приём витаминов и микроэлементов при их дефиците. Эти процедуры помогут обогатить ткани кислородом, улучшат тонус, повысят эластичность, ускорят регенерацию, помогут снять напряжение и расслабиться.

Скелетные мышцы — важный элемент опорно-двигательного аппарата. Они отвечают не только за поддержание позы и перемещение тела в пространстве, но и за терморегуляцию, хранение полезных веществ и защиту внутренних органов. Главная особенность этих мускулов — их способность сокращаться в ответ на нервные импульсы.


Строение скелетной мышцы

Структурно-функциональной единицей скелетной мышцы является симпласт или мышечное волокно - огромная клетка, имеющая форму протяженного цилиндра с заостренными краями (под наименованием симпласт, мышечное волокно, мышечная клетка следует понимать один и тот же объект).

Длина мышечной клетки чаще всего соответствует длине целой мышцы и достигает 14 см, а диаметр равен нескольким сотым долям миллиметра.

Мышечное волокно, как и любая клетка, окружено оболочкой - сарколемой. Снаружи отдельные мышечные волокна окружены рыхлой соединительной тканью, которая содержит кровеносные и лимфатические сосуды, а так же нервные волокна.

Группы мышечных волокон, образуют пучки, которые, в свою очередь, объединяются в целую мышцу, помещенную в плотный чехол соединительной ткани переходящей на концах мышцы в сухожилия, крепящиеся к кости (рис.1).

Рис. 1. Строение скелетной мышцы

Усилие, вызываемое сокращением длины мышечного волокна, передается через сухожилия костям скелета и приводит их в движение.

Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов (рис. 2) - нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления - аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну.

Рис. 2. Строение мотонейрона

Таким образом, один мотонейрон иннервирует целую группу волокон (так называемая нейромоторная единица), которая работает как единое целое.

Мышца состоит из множества нервно моторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.

Для понимания механизма сокращения мышцы необходимо рассмотреть внутреннее строение мышечного волокна, которое, как вы уже поняли, сильно отличается от обычной клетки. Начнем с того, что мышечное волокно многоядерно. Связано это с особенностями формирования волокна при развитии плода. Симпласты (мышечные волокна) образуются на этапе эмбрионального развития организма из клеток предшественников - миобластов.

Миобласты (неоформленные мышечные клетки) интенсивно делятся, сливаются и образуют мышечные трубочки с центральным расположением ядер. Затем в мышечных трубочках начинается синтез миофибрилл (сократительных структур клетки см. ниже), и завершается формирование волокна миграцией ядер на периферию. Ядра мышечного волокна к этому времени уже теряют способность к делению, и за ними остается только функция генерации информации для синтеза белка.

Но не все миобласты идут по пути слияния, часть из них обособляется в виде клеток-сателлитов, располагающихся на поверхности мышечного волокна, а именно в сарколеме, между плазмолемой и базальной мембраной - составными частями сарколемы. Клетки-сателлиты, в отличие от мышечных волокон, не утрачивают способность к делению на протяжении всей жизни, что обеспечивает увеличение мышечной массы волокон и их обновление. Восстановление мышечных волокон при повреждении мышцы возможно благодаря клеткам-сателлитам. При гибели волокна, скрывающиеся в его оболочке, клетки-сателиты активизируются, делятся и преобразуются в миобласты.

Миобласты сливаются друг с другом и образуют новые мышечные волокна, в которых затем начинается сборка миофибрилл. То есть при регенерации полностью повторяются события эмбрионального (внутриутробного) развития мышцы.

Помимо многоядерности отличительной чертой мышечного волокна является наличие в цитоплазме (в мышечном волокне ее принято называть саркоплазмой) тонких волоконец – миофибрилл (рис.1), расположенных вдоль клетки и уложенных параллельно друг другу. Число миофибрилл в волокне достигает двух тысяч.

Миофибриллы являются сократительными элементами клетки и обладают способностью уменьшать свою длину при поступлении нервного импульса, стягивая тем самым мышечное волокно. Под микроскопом видно, что миофибрилла имеет поперечную исчерченность - чередующиеся темные и светлые полосы.

При сокращении миофибриллы светлые участки уменьшают свою длину и при полном сокращении исчезают вовсе. Для объяснения механизма сокращения миофибриллы около пятидесяти лет назад Хью Хаксли была разработана модель скользящих нитей, затем она нашла подтверждение в экспериментах и сейчас является общепринятой.

ЛИТЕРАТУРА

  1. МакРоберт С. Руки титана. – М.: СП " Уайдер спорт", 1999.
  2. Остапенко Л. Перетренированность. Причины возникновения перетренированности при силовом тренинге // Ironman, 2000, № 10-11.
  3. Солодков А. С., Сологуб Е. Б. Физиология спорта: Учебное пособие. – СПб: СПбГАФК им. П.Ф. Лесгафта, 1999.
  4. Физиология мышечной деятельности: Учебник для институтов физической культуры / Под ред. Коца Я. М. – М.: Физкультура и спорт, 1982.
  5. Физиология человека (Учебник для институтов физической культуры. Изд. 5-е). / Под ред. Н. В. Зимкина. – М.: Физкультура и спорт, 1975.
  6. Физиология человека: Учебник для студентов медицинских институтов / Под ред. Косицкого Г. И. - М.: Медицина, 1985.
  7. Физиологические основы спортивной тренировки: Методические указания по спортивной физиологии. – Л.: ГДОИФК им. П.Ф. Лесгафта, 1986.

fizkulturaisport.ru

Архитектура скелетных мышц

В первой лекции по дисципли не «Биомеханика мышц» для студентов НГУ им. П.Ф.Лесгафта рассмотрена архитектура скелетных мышц.  Архитектура  скелетных мышц раскрывает состав и строение мышечного волокна, миофибриллы, саркомера, толстого и тонкого филаментов. В лекции описана теория скользящих нитей, описывающая процесс сокращения саркомера, а также свойства и особенности мышечных волокон различных типов.

Лекция 1

Архитектура скелетных мышц человека

1.1. Классификация мышц

Существуют различные классификации скелетных мышц: по форме и размерам, по направлению волокон, по функции, по отношению к суставам.

Классификация по направлению мышечных волокон

Для конечностей наиболее типичны веретенообразные и перистые мышцы. Если волокна проходят параллельно продольной оси мышцы, она называется веретенообразной. Если мышечные волокна располагаются под углом к продольной оси мышцы, она называется перистой.

Из-за существования мышц с различным ходом мышечных волокон в анатомии, физиологии и биомеханике мышц утвердились понятия анатомического и физиологического поперечников.

Если произвести разрез мышцы в плоскости, перпендикулярной линии, соединяющей ее начало и конец (длиннику мышцы), и измерить площадь полученной фигуры (площадь поперечного сечения мышцы), то получим значение анатомического поперечника.

Если произвести разрез мышцы в плоскости, перепендикулярной ходу мышечных волокон, и измерить площадь полученных фигур, то сумма площадей будет характеризовать значение физиологического поперечника мышцы.

Анатомический поперечник у веретенообразной мышцы совпадает с ее физиологическим поперечником, в то время как у мышцы перистой физиологический поперечник больше анатомического.

Классификация по количеству головок

Некоторые мышцы имеют несколько головок. Такие мышцы называют соответственно числу головок двуглавыми, трехглавыми и т.д.

Классификация мышц по их отношению к суставам

Мышцы делят на группы по их отношению к суставам. Односуставные мышцы оказывают действие на один сустав. Если мышца перекидывается через два или более суставов, она называется двусуставной или многосуставной.


Рекомендую обратить внимание на учебные пособия «Биомеханика мышц» и «Гипертрофия скелетных мышц человека«


Возле двуосного сустава мышцы группируются соответственно двум его осям движения (сгибание — разгибание, приведение — отведение). К шаровидному суставу, имеющему три оси движения, мышцы прилежат с нескольких сторон и действуют на него в разных направлениях. Так, например, у плечевого сустава имеются мышцы-сгибатели и разгибатели, осуществляющие движения вокруг фронтальной оси, отводящие и приводящие мышцы — вокруг сагиттальной оси и мышцы-вращатели – вокруг продольной оси.

Классификация мышц по их функции

В зависимости от функции различают мышцы-синергисты и мышцы-антагонисты. Как правило, на каждый сустав в одном направлении действует две или более мышц. Такие содружественные по направлению действия мышцы называют синергистами. Мышцы, действующие на сустав в противоположном направлении (сгибатели и разгибатели), являются антагонистами.

Классификация мышц по особенностям прикрепления и выполняемой функции

П.Ф. Лесгафтом (1905) предложена классификация мышц в зависимости от их морфометрических характеристик П.Ф. Лесгафт различал мышцы сильные и мышцы ловкие. Он писал: « …мышцы по преимуществу сильные начинаются и прикрепляются к большим поверхностям, удаляясь по мере увеличения поверхности прикрепления от опоры рычага, на которой он действует; физиологический поперечник таких мышц относительно мал, несмотря на что они могут проявить большую силу при небольшом напряжении, почему и не так легко утомляются. Они действуют преимущественно всею своею массою и не могут производить мелких оттенков при движении; силу свою они проявляют с относительно малою скоростью и состоят чаще всего из коротких мышечных волокон. Мышцы второго типа, отличающиеся ловкостью в своих действиях, начинаются и прикрепляются на небольших поверхностях, близко к опоре рычага, на который действуют; физиологический поперечник их относительно велик, они действуют с большим напряжением, скорее утомляются, состоят чаще всего из длинных волокон и могут действовать отдельными своими частями, производя различные оттенки движений. Это будут мышцы, допускающие главным образом ловкие и быстрые движения».

1.2. Макроструктура мышцы

Основными структурными элементами скелетной мышцы являются мышечные волокна и соединительнотканные элементы, выполняющие в мышце вспомогательные функции.

Мышечные волокна, объединенные в пучки, формируют брюшко мышцы, переходящее в сухожилие. Окончания мышечных волокон «специализируются» в передаче силы сухожилию. Мышечные волокна по мере приближения к сухожилию значительно сужаются, и диаметр их уменьшается почти на 90%. Сужение волокон придает брюшку мышцы его типичную веретенообразную форму. На конце каждого волокна имеются складки. Они обеспечивают распределение сократительной силы на большей площади, тем самым, снижая нагрузку на поверхность волокна. Кроме того, передача силы под углом обусловливает сдвигающую нагрузку на соседние структуры.

Сухожилия состоят из плотной волокнистой соединительной ткани, богатой коллагеновыми волокнами, формируются как продолжение внутримышечных соединительнотканных элементов и вплетаются в надкостницу. Сухожилие снаружи покрыто футляром из плотной волокнистой соединительной ткани. В соединительнотканных прослойках проходят кровеносные сосуды и нервы. Сухожилие мало растяжимо, обладает значительной прочностью и выдерживает огромные нагрузки. Более подробно о механических свойствах сухожилия будет рассказано в третьей лекции.

Скелетные мышцы имеют определенные особенности прикрепления к костям. Проксимальный отдел мышцы начинается от одной кости – это начало мышцы. Дистальный конец – сухожилие – прикрепляется к другой кости – это прикрепление мышцы. При сокращении мышцы один ее конец остается неподвижным (фиксированная точка), другой изменяет свое положение (подвижная точка). Иногда фиксированная и подвижная точки меняются местами.

Соединительно-тканные оболочки. Поперечный разрез брюшка мышцы свидетельствует о его сложной структуре. Снаружи мышца окружена плотной соединительной тканью — эпимизием. Эпимизий состоит из пучков коллагеновых волокон. Разрезав эпимизий можно увидеть пучки мышечных волокон как бы «завернутых» в оболочку соединительной ткани. Эта соединительнотканная оболочка называется перимизий. Перимизий также достаточно плотный и относительно толстый. Разрезав перимизий, можно увидеть отдельные мышечные волокна, окруженные рыхлой соединительною тканью. Эта оболочка называется эндомизий (рис.1.1).

Рис. 1.1. Соединительнотканные структуры мышцы (В.С. Гурфинкель, Ю.С. Левик, 1985): 1 – перимизий;
2 –эндомизий, 3 – эпимизий

Фасции представляют собой соединительнотканные футляры для мышц. Они отделяют мышцы друг от друга, создают опору для мышцы при ее сокращении, служат местом начала для некоторых мышц.

Строение фасций зависит от функций мышц, давления, которое мышцы оказывают на фасции при своем сокращении. В тех местах, где мышцы много работают, фасции хорошо развиты, плотные, подкреплены сухожильными волокнами и по внешнему виду напоминают тонкое, широкое сухожилие (широкая фасция бедра, фасция голени).

Функции соединительной ткани

1. В процессе развития соединительная ткань выполняет функцию каркаса (мягкого скелета мышцы), на котором фиксируются мышечные волокна. После завершения развития мышц соединительная ткань продолжает удерживать их вместе и во многом определяет структуру мышечного брюшка.

2. В перимизии располагаются каналы для кровеносных сосудов и нервов, обслуживающих мышечные волокна.

3. Соединительная ткань противостоит пассивному растяжению мышцы и обеспечивает такое распределение сил, при котором вероятность повреждения мышечных волокон сводится к минимуму. Кроме того, свойство эластичности, обусловленное эластиновыми фибриллами и коллагеновыми пучками, позволяет брюшку восстановить свою форму после устранения действия пассивных сил.

4. Посредством эндомизия часть силы, развиваемой мышечным волокном передается сухожилию.

1.3. Микроструктура мышцы

Рассмотрим подробно строение основного структурного элемента мышцы – мышечного волокна.

Поперечнополосатая (скелетная) мышца образована расположенными параллельно друг другу мышечными волокнами длиной от 4 см и более и толщиной до 0,1 мм. Каждое волокно имеет цилиндрическую форму, покрыто двумя оболочками: базальной мембраной и сарколеммой. Между оболочками мышечного волокна находятся клетки-сателлиты. Внутри волокно заполнено гелеобразным содержимым — саркоплазмой. В саркоплазме находятся: миофибриллы, ядра, митохондрии, рибосомы, лизосомы и др. Каждая миофибрилла как муфтой окружена саркоплазматическим ретикулумом. В нем находятся ионы Са2+. В сарколазме также содержится белок миоглобин, который, подобно гемоглобину, может связывать 02. В зависимости от количества миоглобина в мышечных волокнах различают так называемые красные и белые мышечные волокна.

Миофибриллы являются основными сократительными элементами мышцы. Их внешний вид можно сравнить со стеблем бамбука. Длинные участки — это саркомеры, а промежутки между ними — Z-диски, рис.1.2.

Рис. 1.2. Схема строения миофибриллы

1.4. Строение саркомера

Участок миофибриллы между двумя Z-дисками называется саркомером. В обе стороны от Z-диска отходят тонкие филаменты, а в середине саркомера находятся толстые нити. В определенных участках саркомера толстые и тонкие нити перекрываются. Этому участку соответствует темный диск, в то время, как в районе светлого диска находятся только актиновые нити. Средняя часть диска темного диска более светлая; она называется Н зоной, и, в свою очередь, подразделяется надвое линией М, которая делит миозиновые нити на две равные части. Поперечный разрез миофибриллы свидетельствует о том, что в соте вокруг одного толстого филамента размещаются шесть тонких филаментов. Однако в саркомере таких сот много. Расчеты показывают, что в одном саркомере  диаметром 1 мкм содержится 1261 толстый филамент и 5292 тонких филаментов. При увеличении площади саркомера отношение количества тонких филаментов к количеству толстых уменьшается с 12 (12 тонких филаментов на один толстый) до 4,19 (5292 тонких на 1261 толстый), если диаметр саркомера достигает 1 мкм.

Строение толстого филамента

Основным структурным элементом толстого филамента является белок миозин. Молекула миозина состоит из двух частей: длинного палочкообразного участка («хвоста») и присоединенного к одному из его концов глобулярного участка, который представлен двумя одинаковыми «головками». Молекулы миозина расположены в толстом филаменте таким образом, что головки регулярно распределяются по всей ее длине, кроме небольшого срединного участка, где их нет («голая» зона), рис.1.3.

Рис. 1.3. Строение толстого филамента (В.Л. Быков, 1998)

Строение тонкого филамента

Каждый тонкий филамент образован двумя спиральными нитями из молекул актина, закрученными один вокруг другого и двух вспомогательных белков тропомиозина и тропонина. Оба вспомогательных белка (тропомиозин и тропонин) подавляют взаимодействие актина с миозином в отсутствии ионов кальция, рис.1.4.

Рис. 1.4. Тонкий филамент, состоящий из молекул актина, тропомиозина и тропонина (Дж.Х. Уилмор, Д.Л. Костилл, 1997)

1.5. Теория скользящих нитей

Способ сокращения волокон скелетной мышцы был определен в результате двух различных исследований, проведенных в начале 1950-х годов при участии ученых Эндрю и Хью Хаксли. В то время, когда Хью Хаксли проводил свои исследования при помощи электронного микроскопа, Эндрю Хаксли использовал интерференционный микроскоп для изучения характеристик мышечных волокон лягушки во время сокращения и расслабления. Он обнаружил, что во время сокращения светлый диск становился короче, тогда как длина темного диска не изменялась; в то же время бледная Н-зона в темном диске сужалась и могла вообще исчезнуть. Оба ученых независимо друг от друга выдвинули предположение, что полученные ими результаты можно объяснить скользящим движением филаментов актина и миозина относительно друг друга. Теория скольжения филаментов сегодня является общепризнанной. Кратко ее сущность состоит в следующем.

Установлено, что во время сокращения (укорочения) саркомера длина тонкого и толстого филаментов не меняется. При этом неизменной особенностью сокращения является центральное положение толстого филамента в саркомере, посередине между Z-дисками. При поступлении по аксону мотонейрона нервного импульса нервные окончания выделяют нейромедиатор – ацетилхолин, который «привязывается» к рецепторам сарколеммы. При достаточном его количестве электрический заряд передается по всей длине мышечного волокна. Этот процесс называется развитием потенциала действия. Кроме деполяризации мембраны мышечного волокна, электрический импульс проходит через сеть трубочек волокна (Т-трубочки и саркоплазматический ретикулум) во внутреннюю часть клетки. Поступление электрического импульса приводит к выделению значительного количества ионов Са2+ в саркоплазму. Следует заметить, что концентрация ионов Са2+ в саркоплазматическом ретикулуме выше, чем в саркоплазме. После этого ионы Са2+ связываются с тропонином, который начинает процесс сокращения, «поднимая» молекулы тропомиозина с активных участков актиновых филаментов.

Миозин в покое неактивен, так как на его головке находится отрицательно заряженный комплекс Mg, ATФ, не позволяющий белку проявлять АТФ-азные свойства. После поступления ионов Са2+ происходит нейтрализация заряда на головке, что приводит миозин в возбужденное состояние. После этого миозиновые головки начинают прикрепляться к активным участкам тонкого филамента.

Когда миозиновая головка толстого филамента прикрепляется к тонкому филаменту, между толстым и тонким филаментами образуется поперечный мостик. При взаимодействии с актином каждая миозиновая молекула ежесекундно гидролизует до 10 молекул АТФ. За счет энергии, высвобождающейся при расщеплении АТФ, миозиновая головка поворачивается, что приводит к скольжению толстого и тонкого филаментов относительно друг друга. В конце гребка (поворота) к миозиновой головке присоединяется новая молекула АТФ, что приводит к отделению головки от актина и присоединению к новому активному участку тонкого филамента до тех пор, пока миозиновые головки не достигнут Z-диска. Так как при сокращении саркомера расстояние между Z-дисками уменьшается, происходит уменьшение его длины. Одновременное сокращение всех саркомеров приводит к уменьшению длины миофибриллы и мышечного волокна. Ввиду того, что саркомер представляет собой не плоскую, а объемную структуру, при его сокращении происходит не только уменьшение его длины, но и увеличение его поперечного сечения (когда тонкие нити втягиваются в толстые), поперечного сечения мышечных волокон и всей мышцы. рис.1.5.

Рис. 1.5. Схема, иллюстрирующая взаимодействие толстого и тонкого филаментов (Л. Страйер, 1985)

Прекращение нервного импульса приводит к расщеплению ацетилхолина и разрыву поперечных мостиков между актином и миозином. Благодаря действию «кальциевого насоса» ионы Са2+ возвращаются в саркоплазматический ретикулум, актин и миозин инактивируются, длина саркомера возвращается к исходному значению. Мышца расслабляется. Мышечное сокращение может продолжаться до тех пор, пока не истощатся запасы ионов кальция. Затем они снова перекачиваются в саркоплазматический ретикулум посредством активной системы «кальциевого насоса». Следует отметить, что для осуществления этого процесса необходима энергия АТФ.

Каким образом доставляется энергия к филаментам? Кроме участка для прикрепления к тонкому филаменту, миозиновая головка содержит участок, в котором локализуется АТФ. Освобождающая вследствие реакции гидролиза (расщепления АТФ) энергия используется для прикрепления миозиновой головки к тонкому филаменту, а после осуществления поворота головки – для отделения миозиновой головки от тонкого филамента.

1.6. Типы скелетных мышечных волокон и их морфофункциональная характеристика

Рассматривая макроструктуру скелетных мышц, были выделены три основных элемента: это фасции, мышечные волокна и сухожилия. В этом параграфе мы более подробно рассмотрим типы мышечных волокон, так как от этого во многом зависит способность мышц к проявлению силы, скорости, а также выносливости.

Вначале были выделены два типа скелетных мышечных волокон, каждый из которых имел свои физиологические особенности. Это – медленные (тонические) и быстрые (фазические) волокна. В некоторых мышцах могут быть только быстрые или только медленные волокна, в других – волокна обоих типов в определенном соотношении. В дальнейшем были выделены мышечные волокна промежуточного типа.

Благодаря различным типам волокон организм способен передвигаться и поддерживать позу. Быстрые волокна позволяют мышце сокращаться с высокой скоростью. В большом количестве эти волокна имеются у хищников; они обеспечивают быстроту реакции при ловле добычи. С другой стороны, потенциальная добыча, чтобы не стать жертвой хищников, тоже должна быть способна к быстрому реагированию. В обоих случаях от подвижности животного будут зависеть его шансы на выживание. Когда животное находится в покое, оно поддерживает определенную позу с помощью тонических мышечных волокон. Им свойственно более медленное и длительное сокращение и в то же время энергетические затраты меньше, чем при сокращении быстрых волокон. Сокращение их по своей природе обычно изометрическое, при котором мышцы, противодействуя силе тяжести и удерживая конечности в определенном положении, сохраняют постоянную длину.

У человека все мышцы тела состоят из волокон трех типов, но обычно один из них доминирует. Это имеет физиологическое значение, поскольку тонические мышцы способны к медленному и длительному сокращению и поэтому медленных волокон больше в позных мышцах-разгибателях, тогда как в сгибателях, предназначенных для быстрых реакций, преобладают быстрые фазические волокна.

Согласно современным представлениям, большинство скелетных мышц человека и животных представляют собой гетерогенные морфофункциональные системы, состоящие из мышечных волокон, отличающихся по структуре, метаболизму и функции.

Мышечные волокна I типа в мировой номенклатуре обозначают как красные, окислительные, медленные, устойчивые к утомлению. В мышечных волокнах I типа хорошо выражен Z-диск, который толще, чем в мышечных волокнах других типов, саркоплазмаческий ретикулум развит в меньшей степени, чем в других типах мышечных волокон. В данных структурах выявляется много митохондрий с поперечной ориентацией. В саркоплазме обнаруживаются липидные капли, которые часто контактируют с митохондриями. Мышечные волокна I типа характеризуются также высокой степенью кровообращения. Каждое мышечное волокно I типа контактирует с 5-6 кровеносными капиллярами. В этих волокнах отмечается самое высокое содержание миоглобина. Согласно данным гистохимических исследований, в волокнах I типа обнаруживается более низкая активность креатинфосфокиназы, чем в других мышечных волокнах.

Мышечные волокна IIВ типа в мировой номенклатуре обозначают как белые, быстрые, гликолитические, быстроутомляемые. Z-диск в мышечных волокнах IIВ типа более тонкий, чем в волокнах других типов. В данных структурах очень хорошо развит саркоплазматический ретикулум, системы терминальных цистерн и триад. В саркоплазме мышечных волокон IIB типа сравнительно немного малых по размерам митохондрий, содержащих небольшое число крист. Мышечные волокна IIВ типа контактируют с меньшим количеством капилляров, чем мышечные волокна других типов. Кроме того, в этих волокнах имеется очень мало миоглобина. Именно этим объясняется их более светлая окраска, благодаря чему они и получили название «белых». В мышечных волокнах IIB типа содержание креатинфосфата выше, чем в других типах мышечных волокон.

Мышечные волокна IIA типа в мировой номенклатуре обозначают как промежуточные, окислительно-гликолитические, быстрые, устойчивые к утомлению. Z-диск в мышечных волокна IIA типа, по мнению ряда авторов, толще, чем в мышечных волокнах IIВ типа и не отличается от такового в волокнах I типа. По данному показателю волокна типа IIA занимают промежуточное положение между мышечными волокнами I типа и мышечными волокнами IIB типа. В мышечных волокнах IIA типа хорошо развит саркоплазматический ретикулум и системы триад. Мышечные волокна IIА типа богаче митохондриями, чем волокна IIВ типа и практически не отличаются по этому признаку от мышечных волокон I типа. Митохондрии в мышечных волокнах IIA типа имеют преимущественно продольную ориентацию (по длине оси мышечных волокон). Они часто образуют скопления под сарколеммой. В саркоплазме мышечных волокон IIA типа встречается достаточно большое количество липидных капель. Мышечные волокна IIА типа содержат больше миоглобина, чем мышечные структуры IIВ типа. Содержание креатинфосфата в мышечных волокнах IIА типа ниже, чем в волокнах IIВ типа и не отличается от такового в волокнах I типа. Мышечные волокна данного типа представляются универсальными в плане их метаболизма. В связи с тем, что мышечные волокна IIА типа способны длительное время производить работу достаточно большой мощности, они должны рассматриваться как универсальные мышечные волокна в плане их функциональных возможностей.

Рекомендуемая литература

1. Самсонова, А.В. Гипертрофия скелетных мышц человека: учебное пособие /А.В.Самсонова, СПб: Кинетика, 2018.- 159 с., ил.

2. Самсонова А.В. Биомеханика мышц: учебно-методическое пособие /А.В.Самсонова, Е.Н. Комиссарова / Под ред А.В.Самсоновой .- СПб., 2008.- 217 с.

Структура и функция скелетных мышц - Musculoskeletal Genetics

Мышечная система отвечает за движение человеческого тела, позу, движение веществ внутри тела и за выделение тепла телом. Существует около 700 известных и названных мышц, и, кроме того, мышечная ткань также находится внутри сердца, органов пищеварения и кровеносных сосудов.

В организме человека есть 3 основных типа мышц:

По материалам http: // sciencehumanbodytribute.weebly.com/muscular-system.html

Скелетная мышца - это произвольная мышца, что означает, что мы можем активно контролировать ее функцию. Он прикреплен к кости и образует отдельный орган из мышечной ткани, кровеносных сосудов, сухожилий и нервов, который покрывает наши кости и позволяет двигаться.

Скелетные мышцы часто существуют парами, при этом одна мышца является основным двигателем, а другая действует как антагонист. Например, когда вы сгибаете руку, ваши бицепсы сокращаются, а трицепсы расслаблены.Когда ваша рука возвращается в вытянутую позицию, сокращаются трицепсы, а бицепсы расслабляются.

Скелетная мышца - удивительная ткань со сложной структурой. Он состоит из удлиненных многоядерных клеток, называемых миоцитами (или миофибриллами). Мышечные клетки могут быть от 1 мм до 30 см в длину. Самая длинная мышечная клетка в нашем теле находится в портняжной мышце и имеет длину 30 см (почти 12 дюймов!).

Из биологических форумов.com

Под микроскопом отдельные мышечные клетки кажутся полосатыми (см. Изображение ниже). Это происходит из-за высокоорганизованной структуры мышечных волокон, где a ctin и миозиновые миофиламенты сложены и перекрываются в регулярные повторяющиеся массивы, образуя саркомеры. Нити актина и миозина скользят друг относительно друга и отвечают за сокращение мышц.

Чтобы увидеть, как мышцы сокращаются и работают, посмотрите видео здесь .

Энергия для мышечной функции поступает из внутриклеточных органелл, называемых митохондриями . Митохондрии - это электростанции каждой клетки нашего тела, отвечающие за доставку энергии, необходимой клеткам для их функционирования.

Мышцы нервированы мотонейронами . Моторный нейрон и окруженные им мышечные волокна образуют двигательную единицу . Размер двигательных единиц в организме варьируется в зависимости от функции мышцы. Для тонких движений (глаз) на нейрон приходится меньше мышечных волокон, что позволяет им двигаться.Мышцы, требующие большой силы, имеют много мышечных волокон на единицу. Тело может контролировать силу, решая, сколько двигательных единиц оно активирует для данной функции.

Из http://www.rtmsd.org

В нашем теле есть два типа скелетных мышц, которые различаются по функциям. Медленно сокращающиеся мышечные волокна лучше подходят для тренировок на выносливость и могут работать долгое время, не уставая. Быстро сокращающиеся мышцы хороши для быстрых движений, поскольку они быстро сокращаются, но быстро устают и потребляют много энергии.

Большинство наших мышц состоит из смеси медленных и быстро сокращающихся мышечных волокон. Однако мышцы, участвующие в поддержании осанки, содержат в основном медленно сокращающиеся мышечные волокна, а мышцы, отвечающие за движения глаз, состоят из быстро сокращающихся мышечных волокон.

И, чтобы немного повеселиться, вот прекрасная песня, описывающая все мышцы ног:

.

Структура скелетных мышц

Структура скелетных мышц

Мышечное волокно (клетка) имеет особую терминологию и отличительные характеристики:

  • Сарколемма , или плазматическая мембрана мышечной клетки, сильно инвагинирована поперечными канальцами (Т-трубками), пронизывающими клетку.
  • Саркоплазма, или цитоплазма мышечной клетки, содержит запасающий кальций саркоплазматический ретикулум, специализированный эндоплазматический ретикулум мышечной клетки.
  • Поперечно-полосатые мышечные клетки многоядерные. Ядра лежат по периферии клетки, образуя вздутия, видимые через сарколемму.
  • Практически весь объем клетки заполнен многочисленными длинными миофибриллами. Миофибриллы состоят из нитей двух типов, показанных на рисунке 1:
  • Тонкие филаменты состоят из двух нитей глобулярного белка актина, расположенных в виде двойной спирали. По длине спирали расположены молекулы тропонина и тропомиозина, которые покрывают особые участки связывания на актине.
  • Толстые филаменты состоят из групп нитчатого белка миозина. Каждая миозиновая нить образует выступающую головку на одном конце. Множество миозиновых волокон имеет выступающие головки во многих местах на обоих концах.

Рисунок 1. Два типа нитей

.

Внутри миофибриллы актин и миозиновые нити параллельны и расположены бок о бок. Перекрывающиеся нити образуют повторяющийся узор, который придает скелетным мышцам полосатый вид.Каждая повторяющаяся единица рисунка, называемая саркомером , отделена границей или Z-диском (Z-линия), к которому прикреплены актиновые нити. Нити миозина с их выступающими головками плавают между актином, не прикрепившись к Z-диску.

.

Ткани скелетных мышц: гистология | Kenhub

Авторизоваться регистр
  • Анатомия
    • Основы
    • Верхняя конечность
    • Нижняя конечность
    • Позвоночник и спина
    • Грудь
    • Брюшная полость и таз
    • Голова и шея
    • Нейроанатомия
    • Поперечные сечения
  • Гистология
    • Общие
    • Системы
    • Ткани плода
  • Медицинская визуализация
    • Голова и шея
    • Брюшная полость и таз
    • Верхняя конечность
    • Нижняя конечность
    • Грудь
Немецкий португальский Получить помощь Как учиться EN | DE | PT Получить помощь Как учиться Авторизоваться регистр Анатомия Основы Терминология Первый взгляд на кости и мышцы Первый взгляд на нейроваскуляризацию Первый взгляд на системы Верхняя конечность Плечо и рука Локоть и предплечье Запястье и рука Нейроваскуляризация верхней конечности Нижняя конечность Бедра и бедра Колено и нога Лодыжки и стопы .

скелетных мышц | Определение и функции

Скелетная мышца , также называемая произвольной мышцей , у позвоночных, наиболее распространенная из трех типов мышц тела. Скелетные мышцы прикреплены к костям с помощью сухожилий, и они производят все движения частей тела по отношению друг к другу. В отличие от гладких мышц и сердечной мышцы, скелетные мышцы находятся под произвольным контролем. Однако, как и сердечная мышца, скелетная мышца имеет поперечно-полосатую форму; его длинные, тонкие, многоядерные волокна пересекаются правильным рисунком из тонких красных и белых линий, что придает мышце характерный вид.Волокна скелетных мышц связаны между собой соединительной тканью и сообщаются с нервами и кровеносными сосудами. Для получения дополнительной информации о структуре и функции скелетных мышц, см. мышечная и мышечная система человека.

  • поперечнополосатая мышца; двуглавая мышца человека

    Строение поперечно-полосатой или скелетной мышцы. Поперечно-полосатая мышечная ткань, такая как ткань двуглавой мышцы человека, состоит из длинных тонких волокон, каждое из которых, по сути, представляет собой пучок более тонких миофибрилл.Внутри каждой миофибриллы находятся филаменты белков миозина и актина; эти волокна скользят друг мимо друга по мере того, как мышца сокращается и расширяется. На каждой миофибрилле можно увидеть регулярно появляющиеся темные полосы, называемые Z-линиями, где перекрываются актиновые и миозиновые филаменты. Область между двумя линиями Z называется саркомером; саркомеры можно рассматривать как первичную структурную и функциональную единицу мышечной ткани.

    Encyclopædia Britannica, Inc.
  • скелетная мышца

    Микрофотография, показывающая расположение волокон скелетных мышц в поперечном сечении.

    © Эд Решке / Питер Арнольд, Inc.

Британская викторина

Человеческое тело

Возможно, вы знаете, что человеческий мозг состоит из двух половин, но какая часть человеческого тела состоит из крови? Проверьте обе половины своего разума в этой викторине по анатомии человека.

.

Смотрите также

3